Pneumonies et pleuropneumopathies communautaires graves: actualités

Pr Etienne JAVOUHEY

Service de réanimation et Urgences Pédiatriques
Hôpital Femme Mère Enfant,
Hospices Civils de Lyon
Université Claude Bernard Lyon1

Définitions

Selon l'Organisation Mondiale de la Santé

Pneumonie suspectée si

- Toux
- et/ou difficulté respiratoire (tachypnée, tirage sous-costal)
- avec ou sans fièvre

Et souvent une image radiologique ou échographique compatible

Pneumonie sévère (5 à 30%) si

- désaturation
- détresse respiratoire (tirage, grunting),
- incapacité à s'hydrater
- état de conscience altéré
- stridor au repos
- Malnutrition

Pneumonie « grave » si

- insuffisance respiratoire imminente ou avérée,
- instabilité hémodynamique
- ou risque d'évolution rapide vers l'une ou l'autre de ces situations (pneumonie « potentiellement grave »)

Nous ne traiterons pas des PNP de l'immunodéprimé ni des pneumopathies acquises sous ventilation

Diagnostic positif et documentation microbiologique

- Beaucoup de FP avec cette définition
- Intérêt de l'échographie pulmonaire +++ Orso et al J Ultrasound 2018
- Intérêt limité des biomarqueurs : PCT plus précoce que CRP
- Très peu de documentation microbiologique
 - Place des PCR multiplex (crachats?) ?
 - Utile si diagnostic de Grippe, VRS ou COVID
 - Mais n'élimine pas une surinfection bactérienne : importance de la clinique et biomarqueurs?
 - Nbx FP liés au portage : Pneumocoque, Mycoplasme
 - PCR quantitative? Autre confirmation : Ag pneumo dans liquide pleural, Streptatest+ dans liquide pleural pour les pleuroPNP

Intérêt des PCR multiplex: optica study

- 499 patients randomisés PEC avec PCR multiplex vs PEC usuelle
- Essai multicentrique aux urgences (11 centres) 3m-18 ans
- 248 testés en PCR multiplex (Filmarray)
- Caractère approprié de l'ATB était significativement plus élevé dans le groupe PCR: 168/245, 68,6% vs. 120/249, 48,2%; RR 1,42 [1,22– 1,66]; p < 0,0001)
- Par une reduction des prescriptions inutiles d'ATB en cas de PNP virale RR 3,29 [2,20–4,90]

Agents microbiens responsables des PAC chez enfant

Virus surtout

- VRS +
- Grippe +++
- Adénovirus, Métapneumovirus +
- SARS-CoV2, MERS...
- Varicelle, rougeole,
- Bactéries
 - Pneumocoque ++
 - Mycoplasme ++
 - Coqueluche
 - Staphylococcus aureus, Streptococcus groupe A ++
 - Haemophilus, Moraxella
 - E Coli, Strepto B chez nouveau né et nrs< 3 mois
 - Plus rarement : Klebsiella, Enterobacter, Pseudomonas
 - BK

Et les sur-infections bactériennes de virus

Grippe sutrtout
Covid et vrs

Surinfection bactérienne dans la grippe

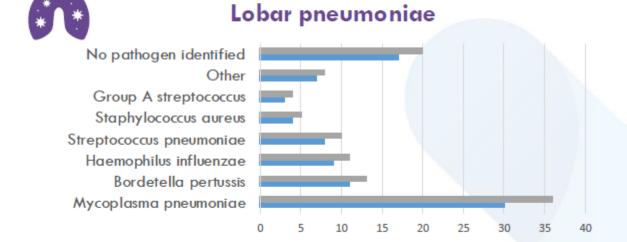
- Facteur de surmortalité démontré: pneumocoque et grippe H1N1 OR 2 de mortalité (Jouvet et al. Pediatr Crit Care Med 2010, MacIntyre et al. BMC infectious Disease 2018)
- Etude américaine pandémie H1N1: Randolph et al. Pediatrics 2011
 - 33% co-infection bactériennes dans les 72h;
 - 26% *S. aureus* (48% of MRSA)
 - 5.5% S. pneumoniae
 - 5% H. influenzae
 - Bactériémie 5%: S. aureus surtout

CAPRICE Study: Community-Acquired Pediatric bacteRial Infection in intensive CarE unit

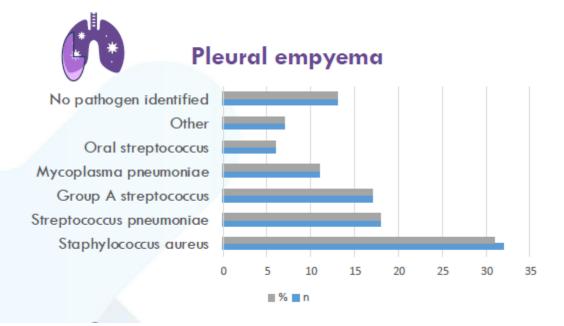
Michaël Levy (PICU Strasbourg), Lionel Berthomieu (PICU Toulouse), Camille Brehin (Pediatric infectious disease Toulouse), Camille Aupiais (Emergency Department Paris), Damien Dubois (Microbiology Toulouse), Stéphane Béchet (ACTIV Créteil), Elise Launay (Pediatric infectious disease Nantes), Francois Angoulvant (Pediatric infectious disease Lausanne), CAPRICE Study group, Corinne Levy (ACTIV Créteil), Etienne Javouhey (PICU Lyon)

French Group Of Pediatric Emergency and Intensive Care (GFRUP)
French Group Of Pediatric Infectious Disease (GPIP)

Results: clinical presentation


CLINICAL PRESENTATION	Median [IQR], n (%)
Delay 1st symptom – PICU admission, days	4 [1, 7]
Clinical syndrome	
Lower respiratory tract infections	287 (32%)
Diffuse pneumoniae	104 (12%)
Pneumoniae with pleural empyema	104 (12%)
Lobar pneumoniae	79 (9%)
Meningitis	175 (20%)
Ear Nose Throat infections	118 (13%)
Abdominal infections	46 (5%)
Cerebral empyema	46 (5%)
Urinary tract infections	43 (5%)
Soft tissue infections	35 (4%)
Infection without a source	33 (4%)
Osteoarticular infections	14 (2%)
Other infections	108 (12%)
Sepsis #	114 (13%)
Septic shock [#]	149 (17%)
Toxin shock syndrome	85 (9%)

ORGAN FAILURE	Median [IQR], n (%)
Mortality PIM3 (%)	1.5 [0.9, 3.3]
Organ failure\$	505 (56%)
- respiratory	352 (39%)
including ARDS	69 (8%)
- cardiovascular	223 (25%)
- neurologic	156 (17%)
- renal	97 (11%)
- hépatic	54 (6%)
- gastro-intestinal	30 (3%)
- hematologic	122 (14%)
- coagulation	72 (8%)
- immunologic	17 (2%)
- endocrinologic	13 (1%)


\$ The PODIUM Consensus Conference. Pediatrics 2022


Results

■ % ■ n

Alternatives : Azithromycine 20 mg/kg/j 1 dose/j 3 jours si non évocateur de pneumocoque

https://www.has-sante.fr/jcms/p_3575612/fr/choix-et-durees-d-antibiotherapie-pneumonie-aigue-communautaire-chez-l-enfant

Cas clinique: Joao 5 ans

Naissance à 41 SA par voie basse, Apgar 10/10, bon développement, Varicelle en 2024 Otites à répétition, Consult ORL prise, pas d'ATT. Pas d'hospitalisation antérieure

Consultation CHG le 29/01 19h pour douleur thoracique:

Pics fébriles avec syndrome grippal depuis 6 jours puis apparition secondaire de céphalées et vomissements le 28/01. Douleur thoracique médiosternale brutale le 29/01 en fin d'après midi.

<u>Cliniquement</u>: **38,8°C**, **douloureux**, pas d'instabilité hémodynamique, auscultation cardiopulmonaire normale. **Douleur basi-thoracique sans irradiation aggravée au décubitus dorsal**, léger tirage intercostal.

Examens complémentaires

- RP: absence de foyer infectieux évident
- ECG normal
- NFS avec leucocytes 11 G/L dont PNN 8,9 G/L, hémoglobine 113 g/L, plaquettes 224 G/L, pas de troubles ioniques. Troponine négative, CPK à 112 UI/L, CRP à 77 mg/L
- PCR grippe et Covid négatives

Hospitalisation? Antibiotique?

Hospitalisé en pédiatrie CHG le 29/01 soir

Scanner TAP le 30/01 matin: pneumopathie lobaire moyenne et basale droite, intro AMOXICILLINE IV

Vomissements persistants, évocation d'une ponction lombaire, non réalisée, ajout de CEFOTAXIME à dose méningée

Dégradation clinique le 30/01/2025 matin: hypotension, tachycardie et pâleur et majoration du syndrome inflammatoire avec PCT > 100 ng/L, CRP à 77 mg/L. Persistance de la fièvre.

Gaz du sang retrouvant un pH à 7,37, une PCO₂ à 43,5 mmHg et lactate à 3,3 mmol/L.

O2 à 1L/mn; Reçoit un 1 RV et mutation HFME

Transfert HFME Lyon

- Transfert: Majoration des besoins en O2: MHC 9l/min
- Au décho cage: QL anormal sur respiration et pâleur
 - A/B: Polypnée, signes de lutte intense, SpO2 93% sous 15L.
 - Tachycarde, normotendu, pas d'hypoperfusion périphérique.
 - G15, un peu confus, pas de raideur méningée ni atteinte cutanée.

> Hospitalisation en réanimation :

Bilan bio d'arrivée 17h:

- Gaz : pH 7,40, capnie 4,3kPa, lactate 2,8mmol/L. Pas de trouble ionique. CRP 159mg/L.
- RP: foyer de PNP inférieur droit et épanchement pleural droit abondant au contact.
- A l'ETT : bonne contractilité, pas d'épanchement péricardique, VCI plutôt fine compliante. Epanchement pleural droit abondant mesuré à 3-4cm, pas de cloison visible.
- Virologie : PCR grippe A positive.

Quelle Antibiothérapie?

Evolution secondaire

Nuit du 30 au 31 : Aggravation respiratoire FiO2 à 100% et signes de lutte

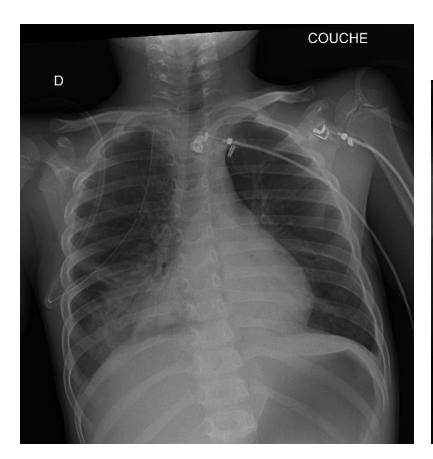
Choc septique: tachycardie (190/min), PAM à 50mmHg et lactate à 5,7mmol/L.

- → 2 Remplissages Vasculaires
- → ajout TAMIFLU + CLINDAMYCINE devant la gravité et preuve de grippe
- → IOT sans difficulté : VAC protectrice car SDRA, FiO₂ 80/100% et hypercapnie. Curarisation. Ajout Noradrénaline.

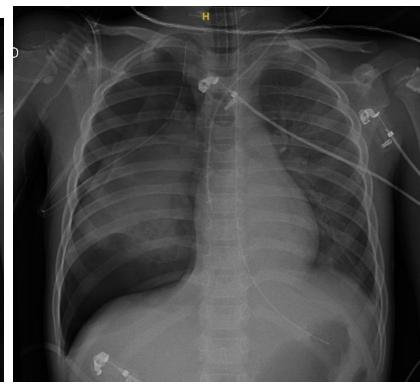
Peu de temps après IOT : 2 ACR brutaux précédés par hypoTA,BDC puis asystolie (No Flow 0mn et 3mn de réa chaque ACR), MCE, 2 doses d'adré, bicarb, glu-Ca et insuline/glucose (hyperkaliémie au ionogramme)

Contrôle RP pour VVC post ACR: **PNO droit complet**, exsufflation à l'aiguille (450ml d'air). Mobilisation et maintien du drain pleural initial en aspiration, amélioration transitoire FiO₂ à 75%.

Noradrénaline jusqu'à 1,2 μg/kg/mn, ajout Hydrocortisone et Adrénaline jusqu'à 0,6μg/kg/mn (amélioration transitoire pendant 3h).


Hyperthermie majeure +++ à 41°C. Nouvelle dégradation hémodynamique et respiratoire vers 6h : PNO compressif droit (déconnexion drain pleural). Majoration Noradrénaline, ajout Vasopressine.

Echec exsufflation, pose 2^{ème} drain pleural : évacuation air, suspicion de brèche pleurale.


Décès en défaillance multiviscérale, échec d'ECMO 7h30 le 31/01

AT: Staphylococcus aureus methicilline sensible sécréteur de PVL

Evolution radiologique

Pneumonies à Staph aureus PVL+ (25,8% mortalité vs 9,1% si PVL-)

Enfants moins de 3 ans: Atteinte pleuropulmonaire Bon pronostic dans 95%

Chez les **plus de 3 ans**, FR de mortalité:

- Méthicilline résistance
- Hémoptysie
- Rash
- Leucopénie
- Lactate élevé

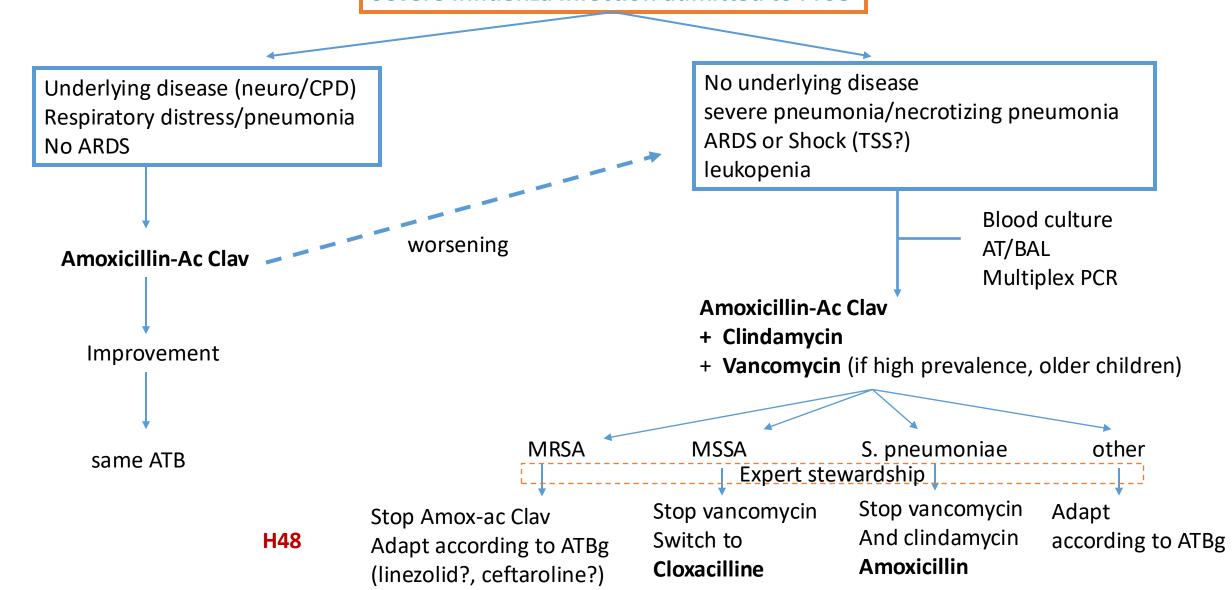
TABLE 4 Cox regression analysis of predictors of death in patients aged ≥3 years with Staphylococcus aureus
pneumonia, including clinical predictors at admission and microbiological predictors

	Bivariate models	Full model	Best-fitting model
Charlson comorbidity score (per point)	1.05 (0.91-1.21)	1.03 (0.85-1.26)	
Male sex	0.68 (0.39-1.17)	0.95 (0.51-1.78)	
PVL	1.95 (1.12-3.41)	0.87 (0.42-1.83)	
Methicillin resistance	2.57 (1.41-4.69)	3.86 (1.34-11.16)	2.87 (1.53-5.40)
SOFA score	1.11 (1.05-1.16)	1.03 (0.96-1.11)	
Flu-like illness	0.71 (0.41-1.23)	0.32 (0.15-0.68)	0.32 (0.17-0.60)
Haemoptysis	2.62 (1.52-4.52)	1.87 (0.98-3.54)	2.15 (1.17-3.93)
Rash	2.17 (1.12-4.23)	2.59 (1.22-5.48)	2.52 (1.24-5.12)
Leukopenia <3 G·L ⁻¹	3.45 (2.00-5.97)	2.38 (1.19-4.76)	2.38 (1.23-4.58)
Procalcitonin per two-fold increase	1.40 (1.21-1.63)	1.05 (0.88-1.24)	
Lactates per two-fold increase	2.40 (1.85-3.12)	2.23 (1.52-3.28)	2.64 (1.95-3.57)
Adapted antimicrobial therapy	0.82 (0.44-1.53)	1.54 (0.52-4.59)	
Antitoxin therapy	2.67 (1.48-4.81)	1.29 (0.63-2.65)	

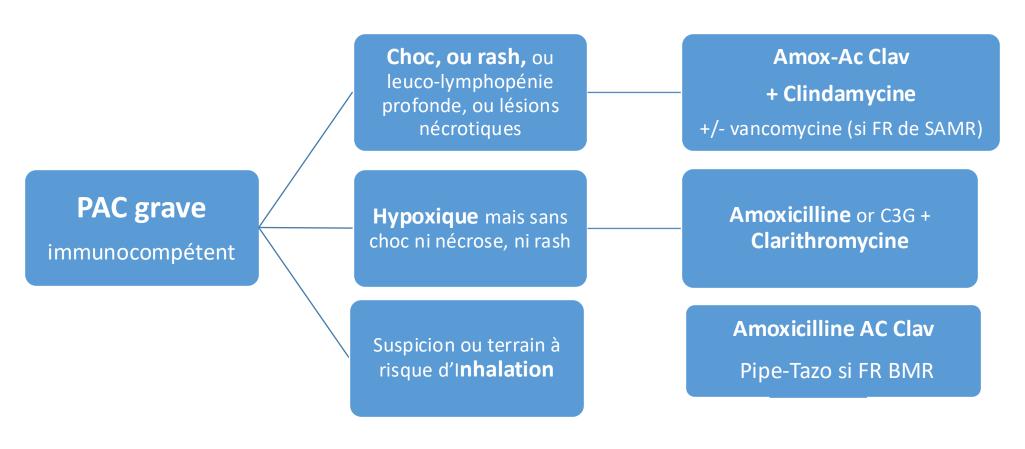
Grippe et co-infection à SAMR

- Associé à une surmortalité : 40% vs 4.3% sans, RR= 9,3 (3,8-22,9))
- Avec leucopénie plus fréquente
- Mortalité 12,5% si le traitement comportait de la vancomycine et un autre anti SAMR comparé à 69,2% si la vancomycine était en monothérapie (RR =5,5, 1,4-21,3)
- Mais étude aux EU, avec forte prévalence de SAMR

Randolph et al. Clin Infect Dis 2019


Adultes et enfant, infections à S.aureus infections envoyées au Centre Nationale de Reference de S. aureus (formes les plus graves, 2017-2020)

• Prevalence de SAMR, R à clindamycin : 15,4%


- Prevalence de SAMR PVL+, R à clindamycin = 11%
- Prevalence de SAMS PVL+, R à clindamycin = 4%

Proposal for an algorithm of treatment

Severe influenza infection admitted to PICU

Antibiothérapie des formes graves ou compliquées

Germes ciblés

Staph aureus Strepto A Pneumo

Pneumo Haemophilus Mycoplasme

Anaérobies BGN Pneumo Staph aureus

Dans tous les cas :

- réévaluation précoce
- adaptation selon ATBgramme et selon dosages ou défaillance d'organe
- Avis infectieux

Pleuropneumopathie

Situation clinique	Prise en charge
Pneumonie avec épanchement pleural	Antibiothérapie
simple : quantité minime (<1cm ou <25%	Pas de drainage systématique
hémithorax), sans détresse respiratoire	
Pneumonie avec épanchement	Antibiothérapie
pleural compliqué :	
-Modéré (>1cm et <50% de l'hémithorax)	ET
avec détresse respiratoire OU	
-Abondant (>50% de l'hémithorax ou	Drainage par :
plus) OU	-Drain thoracique (thoracostomie) et fibrinolytique
-Purulent/empyème	OU
	- Drainage par thoracoscopie assistée par vidéo (VATS)

Place des corticoides dans les pneumonies graves: données adultes

Hydrocortisone

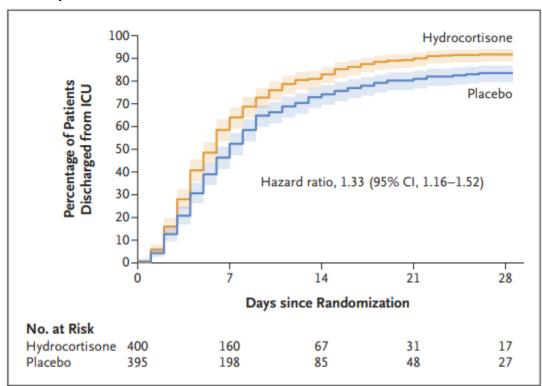
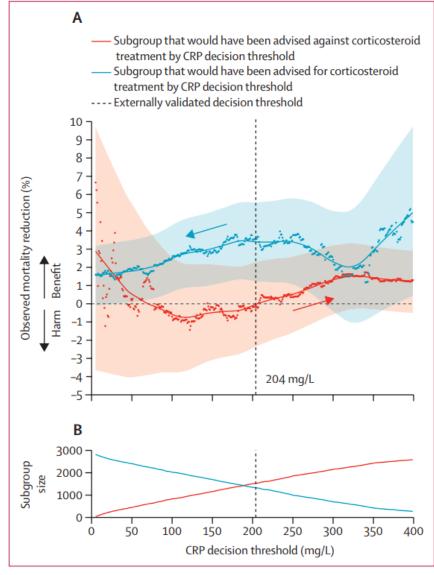



Figure 2. Discharge from ICU by Day 28.

Shown is the cumulative percentage of patients who were discharged from the ICU by day 28 (a secondary outcome in the trial). The length of ICU stay was compared in the framework of a competing-risk model, with death considered as a competing event. For secondary outcomes, the widths of the confidence intervals have not been adjusted for multiplicity and may not be used in place of hypothesis testing.

Efficacité différente selon niveau CRP

Smit et al. Lancet Respi Med 2025

Place des corticoides dans les pneumonies graves: chez enfant?

Pas d'essai randomisé Problème des formes cliniques avec HRB ou asthme Faisabilité d'un ECR ?

Table 3 Case-specific considerations for corticosteroid use in severe CAP ²¹ 44 45 104–106			
Scenario	Potential benefits	Potential harms	
Refractory septic shock	Improved haemodynamic stability	Increased risk of secondary infections	
Severe inflammatory response (eg, ARDS)	Reduction in cytokine storm and inflammation	Delayed clearance of primary infection	
Adjunctive therapy in adrenal insufficiency	Restoration of appropriate stress response	Risk of adrenal suppression with prolonged use	
Severe CAP with high inflammatory markers	Possible reduction in mortality when paired with antibiotics in select high-risk patients	Hyperglycaemia and increased insulin requirements	
Use in viral pneumonias (eg, COVID-19)	Reduced mortality in hypoxaemic patients when used appropriately	Potential worsening of viral replication in the absence of hypoxaemia or bacterial superinfection risk	
Routine use in mild-to-moderate CAP	None documented	Unnecessary exposure leading to side effects such as osteoporosis, muscle weakness or mood disorders	
Patients with pre-existing immunosuppression	Possible stabilisation of baseline condition	Exacerbation of underlying immunosuppressive state and increased susceptibility to opportunistic infections	
ARDS, acute respiratory distress syndrome; CAP, community-acquired pneumonia.			

Haut débit nasal dans les IRA hypoxique de l'enfant

N= 244, en Inde Enfants 2-59 mois IRA hypoxique VRS, Grippe, 45% inconnu ECR ouvert O2 lunettes 2l/min Vs LHD 2l/kg/min ou 20l+0,5l/10kg/min

Table 2 Outcome variables in the two study groups				
Parameter	HFNC group (n = 124)	LFOS group (n = 120)	p-value	
Primary outcome				
Treatment failure, n (%)	9 (7.3)	24 (20)	0.004* (relative risk 0.36, 95% CI 0.18 to 0.75)	
Treatment failure by age strata, n (9	6)			
2–12 months	4/62 (6.5)	12/66 (18.2)	0.045 [†] (relative risk 0.35, 95% CI 0.12 to 1.02)	
13–59 months	5/62 (8.1)	12/54 (22.2)	0.032* (relative risk 0.35, 95% CI 0.14 to 0.96)	
Secondary outcomes				
Clinical stability, hours ^a	109 (84–138.5)	120.5 (61–156.5)	0.818 [§]	
Respiratory stability, hours ^a	107 (82–135)	108 (58.5–145.5)	0.496 [§]	
Fluid overload (%FO) ^b				
At 24 h	2.11 (2.24)	1.95 (2.18)	0.573 [¶]	
At 48 h	1.82 (2.35)	1.53 (2.12)	0.313 [¶]	
Adverse events, n (%)	-	-	-	
In-hospital mortality, n (%)	-	-	-	

Formes hypoxiques

- Suivre les recommandations du SDRA de l'enfant (PALICC2)
- LHD à tester : si absence de réponse dans les 6 premières heures, savoir poser l'indication de l'intubation
- Décubitus ventral : possible mais pas de niveau de preuve
- Corticothérapie : non prouvée chez l'enfant, à discuter dans les formes graves très inflammatoires au cas par cas

Conclusion

- Un diagnostic difficile
- Attitude différenciée selon le terrain et la gravité
- Rechercher signes de choc et signes toxiniques/PVL: antitoxinique +/- IVIG
- Tenir compte de la couverture vaccinale et de l'écologie bactérienne
- Souvent virale, une co-infection bactérienne est à rechercher surtout en cas de grippe
- Pleuro-pneumopathie:
 - couvrir pneumo, staph aureus et strepto A,
 - ponctionner pour obtenir le germe (penser Streptatest, ag pneumo)
 - Drainer si mauvaise tolérance ou volumineux
- Si choc: penser au TSS (strepto A et SA), au pneumocoque et ajouter un antitoxinique
- Corticothérapie non prouvée mais à discuter au cas par cas
- LHD en première intention dans les formes hypoxique mais si pas de réponse : ne pas retarder une intubation