

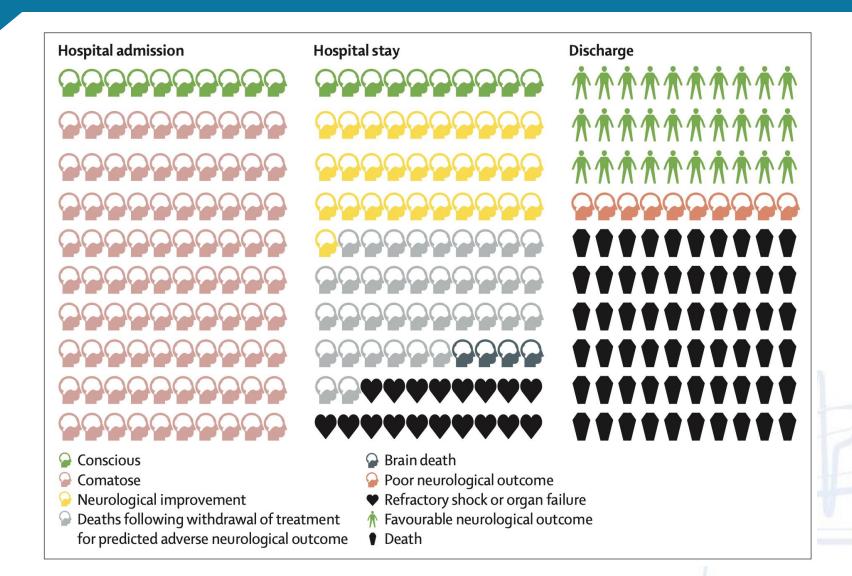
JOURNEE DES FILIERES « ARRET CARDIAQUE » et « COEUR »

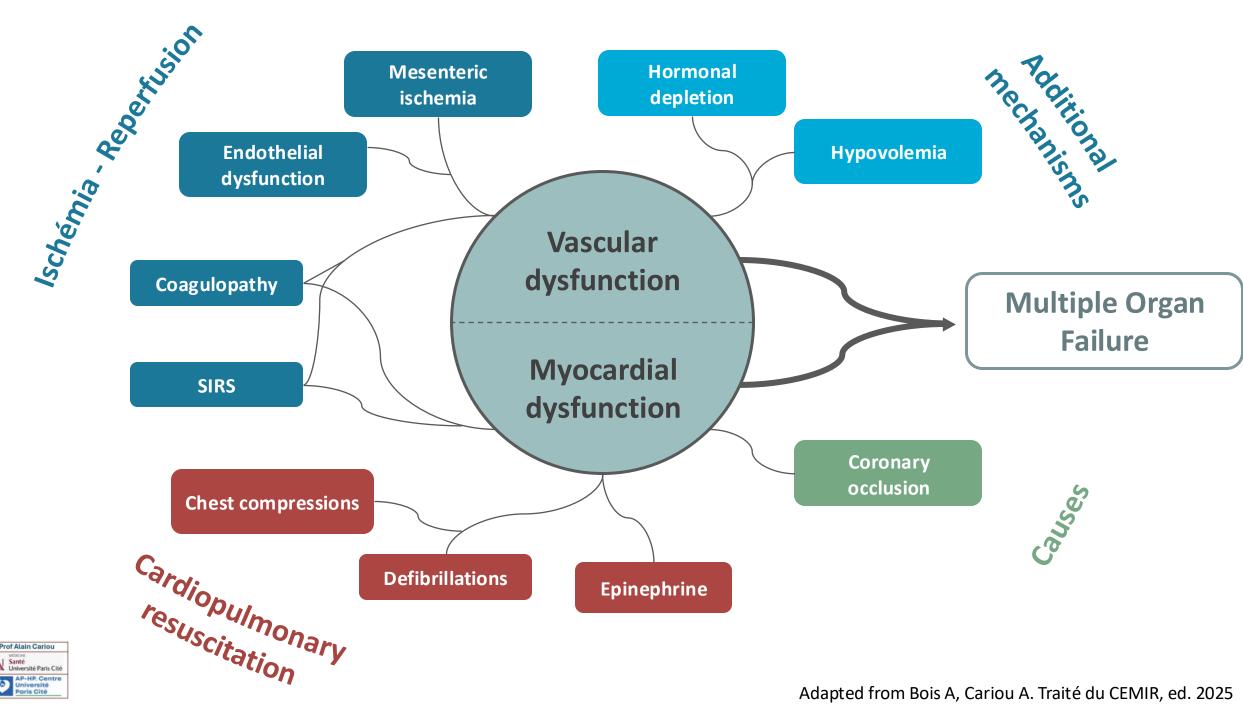
4 rue René Charre – 42800 Saint-Martin-la-Plaine
11 décembre 2025

Arrêt cardiaque : Prise en charge post RACS immédiat

Intensive Care Unit – Cochin University Hospital (AP-HP)
Paris Cité University (medical school) – INSERM U970 (France)

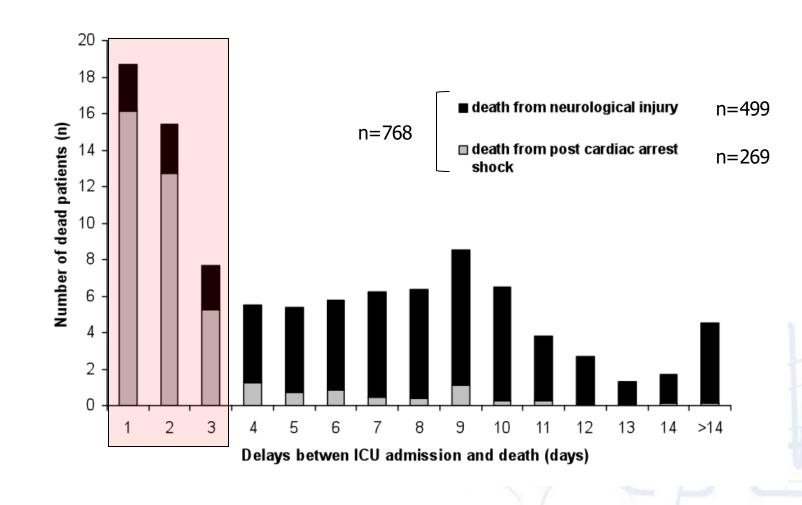
COI disclosure


ORIXHA: Member of the scientific committee



Outcomes following admission for out-of-hospital cardiac arrests

Perkins GD, et al. Lancet 2021



ICU mortality after cardiac arrest: the relative contribution of shock and brain injury

Lemiale V, Dumas F, Mongardon N, Giovanetti O, Charpentier J, Chiche JD, Carli P, Mira JP, Nolan J, Cariou A Intensive Care Med 2013

EUROPEAN RESUSCITATION COUNC

Nolan JP, Sandroni C, Cariou A, Cronberg T, D'Arrigo S, Haywood K, Hoedemaekers A, Lilja G, Nikolaou N, Olasveengen TM, Robba C, Skrifvars MB, Swindell P, Soar J. Intensive Care Med 2025 – Resuscitation 2025

https://doi.org/10.1007/s00134-025-08117-3

CONFERENCE REPORTS AND EXPERT PANEL

European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2025: post-resuscitation

Jerry P. Nolan^{1,2}, Claudio Sandroni^{3,4}* a, Alain Cariou⁵, Tobias Cronberg⁶, Sonia D'Arrigo^{3,4}, Kirstie Haywood⁷, Astrid Hoedemaekers⁸, Gisela Lilja^{9,10}, Nikolaos Nikolaou¹¹, Theresa Mariero Olasveengen¹², Chiara Robba¹³, Markus B. Skrifvars¹⁴, Paul Swindell¹⁵ and Jasmeet Soar¹

The European Resuscitation Council (ERC) and the European Society of Intensive Care Medicine (ESICM) have collaborated to produce these post-resuscitation care guidelines for adults, which are based on the International Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations (CoSTR) published by the International Liaison Committee on Resuscitation (ILCOR). The topics covered include the post-cardiac arrest syndrome, diagnosis of cause of cardiac arrest, control of oxygenation and ventilation, coronary reperfusion, haemodynamic monitoring and management, control of seizures, temperature control, general intensive care management, prognostication, long-term outcome, rehabilitation, and organ donation. The post-resuscitation care of children is described in the ERC guidelines 2025 Paediatric Life Support

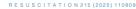
Keywords: Post-cardiac arrest syndrome, Cardiac arrest, Acute coronary syndrome, Coma, Temperature, Prognosis, Rehabilitation, Tissue and organ procurement

Introduction and scope

In 2015, the European Resuscitation Council (ERC) and the European Society of Intensive Care Medicine post-resuscitation care guidelines, which were co-pub-These 2025 guidelines represent the third collaboration term outcome and rehabilitation.

Department of Intensive Care, Emergency Medicine and Anaesthesiology. Fondazione Policlinico Universitario A. Gemell Full author information is available at the end of the article

Jerry P. Nolan and Claudio Sandroni Joint first authors.


This paper has been copublished in Resuscitation: https://doi.org/10.

between the ERC and ESICM and reflect the science published since the previous guidelines were issued In 2021 [3, 4]. The topics covered include the post-cardiac (ESICM) collaborated to produce their first combined arrest syndrome, control of oxygenation and ventilation, haemodynamic targets, coronary reperfusion, temperalished in Resuscitation and Intensive Care Medicine [1, 2]. ture control, control of seizures, prognostication, long-

The international consensus on cardiopulmonary resuscitation science evidence review process

The International Liaison Committee on Resuscita tion (ILCOR, www.ilcor.org) includes representatives from the American Heart Association (AHA), the European Resuscitation Council (ERC), the Heart and Stroke Foundation of Canada (HSFC), the Australian and New

Available online at ScienceDirect

Resuscitation

journal homepage: www.elsevier.com/locate/resuscitation

Practice Guideline

European Resuscitation Council and European Society of Intensive Care Medicine Guidelines 2025 Post-Resuscitation Care *

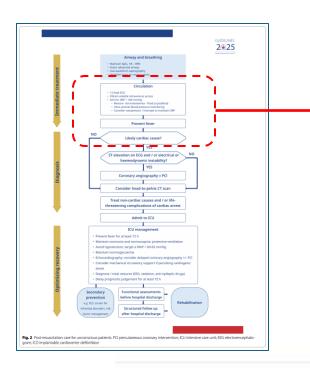
Jerry P. Nolan a,b,#,*, Claudio Sandroni c,d,#, Alain Cariou , Tobias Cronberg , Sonia D'Arrigo b,c, Kirstie Havwood g, Astrid Hoedemaekers b, Gisela Lilia l, Nikolaos Nikolaou^k, Theresa Mariero Olasveengen^l, Chiara Robba^m, Markus B. Skrifvarsⁿ, Paul Swindell^o, Jasmeet Soar^p

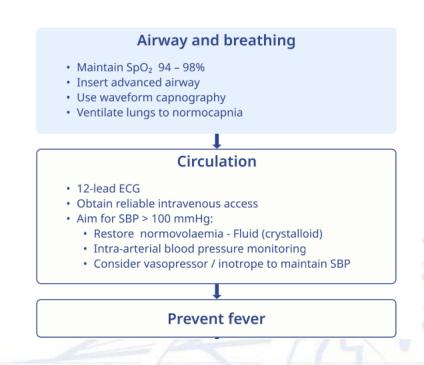
The European Resuscitation Council (ERC) and the European Society of Intensive Care Medicine (ESICM) have collaborated to produce these postresuscitation care guidelines for adults, which are based on the International Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations (CoSTR) published by the International Liaison Committee on Resuscitation (ILCOR). The topics covered include the postcardiac arrest syndrome, diagnosis of cause of cardiac arrest, control of oxygenation and ventilation, coronary reperfusion, haemodynamic monitor ing and management, control of seizures, temperature control, general intensive care management, prognostication, long-term outcome, rehabilitation, and organ donation. The post-resuscitation care of children is described in the FRC Guidelines 2025 Paediatric Life Support. Keywords: Post-cardiac arrest syndrome, Cardiac arrest, Acute coronary syndrome, Coma, Temperature, Prognosis, Rehabilitation

Abbreviations: ACNS, American Clinical Neurophysiology Society, ACS, Acute coronary syndrome, ADC, Apparent diffusion coefficient, AF Atrial fibrillation, AHA, American Heart Association, AKI, Acute kidney injury, ALS, Advanced Life Support, AMI, Acute myocardial infarction, ARDS, Acute respiratory distress syndrome, ATP, Adenosine triphosphate, BIS, Bi-spectral index, BOX, Blood Pressure and Oxygenation Targets after OHCA, BS, Burst suppression, CAC, Cardiac arrest centre, CAD, obstructive coronary artery disease, CAG, Coronary angiography, CBF, Cerebral blood flow, COSCA, Core Outcome Set for Cardiac Arrest, CoSTR, Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations, CPC, Cerebral Performance Category, CPR, Cardiopulmonary resuscitation, CR, Corneal reflex, CT, Computed tomography, DBD. Organ donation after brain death, DCD, Donation after Circulatory Determination of Death, DVT, Deep venous thrombosis, DWI, Diffusion weighted imaging, ECG, Electrocardiogram, ECPR, Extracorporeal cardiopulmonary resuscitation, EEG, Electrocardiogram, FPR, False positive rate, FSS, Fatigue Severity Scale, GFAP, Glial fibrillary acidic protein, GRADE, Grading of Recommendations Assessment, Developmen and Evaluation, GWR, Grey white matter ratio, HADS, Hospital Anxiety and Depression Scale, HIBI, Hypoxic ischaemic brain injury, ICD, Implantable cardioverter defibrillator, ICP, Intracranial pressure, ICU, Intensive care unit, ILCOR, International Liaison Committee on Resuscitation LBBB, Left bundle branch block, LMWH, Low molecular weight heparin, MAP, Mean arterial pressure, MCS, Mechanical circulatory support, MRI, Magnetic resonance imaging, NSE, Neuron specific enolase, OHCA, Out-of-hospital cardiac arrest, PCAS, Post-cardiac arrest syndrome, PCI, Percutaneous coronary intervention, PLR, Pupillary light reflex, PPCI, Primary percutaneous coronary intervention, RASS, Richmond Agitation Sedation Scale, ROC, Receiver operating characteristic, ROSC, Return of spontaneous circulation, SBP, Systolic blood pressure, SCA, Sudden cardiac arrest, SCD, Sudden cardiac death, SGA, Supraglottic airway, SSEP, Somatosensory evoked potential, STEMI, ST elevation myocardial infarction, TBI, Traumatic brain injury, TCD, Transcranial Doppler, VF, Ventricular fibrillation, VT, Ventricular tachycardia, WLST, Withdrawal of lifesustaining treatment

- → This naner has been conublished in Intensive Care Medicine
- Corresponding author.

ttps://doi.org/10.1016/j.resuscitation.2025.110809 0300-9572/© 2025 European Resuscitation Council. Published by Elsevier B.V.


Nolan JP, Sandroni C, Cariou A, Cronberg T, D'Arrigo S, Haywood K, Hoedemaekers A, Lilja G, Nikolaou N, Olasveengen TM, Robba C, Skrifvars MB, Swindell P, Soar J. Intensive Care Med 2025 – Resuscitation 2025


Immediate post-resuscitation care

Post-resuscitation care is started immediately after sustained return of spontaneous circulation (ROSC), regardless of location

JAMA | Original Investigation

Effect of Bag-Mask Ventilation vs Endotracheal Intubation During Cardiopulmonary Resuscitation on Neurological Outcome After Out-of-Hospital Cardiorespiratory Arrest A Randomized Clinical Trial

JAMA. 2018;319(8):779-787. doi:10.1001/jama.2018.0156

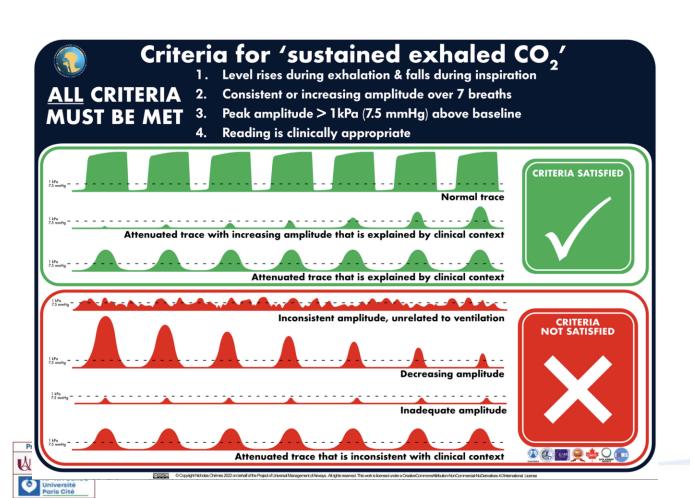
Patricia Jabre, MD, PhD; Andrea Penaloza, MD, PhD; David Pinero, MD; Francois-Xavier Duchateau, MD; Stephen W. Borron, MD, MS; Francois Javaudin, MD; Olivier Richard, MD; Diane de Longueville, MD; Guillem Bouilleau, MD; Marie-Laure Devaud, MD; Matthieu Heidet, MD, MPH; Caroline Lejeune, MD; Sophie Fauroux, MD; Jean-Luc Greingor, MD; Alessandro Manara, MD; Jean-Christophe Hubert, MD; Bertrand Guihard, MD; Olivier Vermylen, MD; Pascale Lievens, MD; Yannick Auffret, MD; Celine Maisondieu, MD; Stephanie Huet, MD; Benoît Claessens, MD; Frederic Lapostolle, MD, PhD; Nicolas Javaud, MD, PhD; Paul-Georges Reuter, MD, MS; Elinor Baker, MD; Eric Vicaut, MD, PhD; Frédéric Adnet, MD, PhD

	No. of Patients (%)	Proportion Difference, BMV(%) - ETI(%)		
Outcome	BMV Group	ETI Group	(95% CI)	P Value ^a	
Intention-to-Treat Population	n = 1018	n = 1022			
Survival at 28 d	55 (5.4)	54 (5.3)	0.1 (-1.8 to 2.1)	.90	
CPCs ^b					
1, Good cerebral performance	35 (3.4)	37 (3.6)			
2, Moderate cerebral disability	9 (0.9)	6 (0.6)			
3, Severe cerebral disability	4 (0.4)	7 (0.7)		.68	
4, Coma or vegetative state	7 (0.7)	7 (0.7) 4 (0.4)			
5, Death	963 (94.6)	968 (94.7)			
Survival to hospital admission	294 (28.9)	333 (32.6)	-3.7 (-7.7 to 0.3)	.07	
Return of spontaneous circulation	348 (34.2)	397 (38.9)	-4.7 (-8.8 to -0.5)	.03	
Per-Protocol Analysis	n = 995	n = 943			
Survival at 28 d	54 (5.4)	51 (5.4)	0.1 (-10 to 9.7)	.99	
CPCs ^b					
1, Good cerebral performance	35 (3.5)	34 (3.5)			
2, Moderate cerebral disability	8 (0.8)	6 (0.6)			
3, Severe cerebral disability	4 (0.4)	7 (0.7)		.76	
4, Coma or vegetative state	7 (0.7)	4 (0.4)			
5, Death	941 (94.6)	892 (94.6)			
Survival to hospital admission	289 (29.1)	312 (33.1)	-4.0 (-7.6 to 0.6)	.055	
Return of spontaneous circulation	342 (34.4)	377 (30.0)	-5.6 (-9.9 to -1.3)	.01	

Université Paris Cité JAMA | Original Investigation

Effect of a Strategy of a Supraglottic Airway Device vs Tracheal Intubation During Out-of-Hospital Cardiac Arrest on Functional Outcome JAMA. 2018;320(8):779-791. doi:10.1001/jama.2018.11597

The AIRWAYS-2 Randomized Clinical Trial


Jonathan R. Benger, MD; Kim Kirby, MRes; Sarah Black, DClinRes; Stephen J. Brett, MD; Madeleine Clout, BSc; Michelle J. Lazaroo, MSc; Jerry P. Nolan, MBChB; Barnaby C. Reeves, DPhil; Maria Robinson, MOst; Lauren J. Scott, MSc; Helena Smartt, PhD; Adrian South, BSc (Hons); Elizabeth A. Stokes, DPhil; Jodi Taylor, PhD; Matthew Thomas, MBChB; Sarah Voss, PhD; Sarah Wordsworth, PhD; Chris A. Rogers, PhD

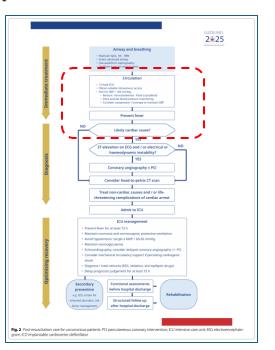
	No. of Patients/Total No	. (%) a
	Tracheal Intubation (n = 4410)	Supraglottic Airway Device (n = 4886)
Primary Outcome: Modified Rankin Scale Score at	Hospital Discharge or 30 d	
0-3 range (good outcome)	300/4407 (6.8)	311/4882 (6.4)
0 (no symptoms)	124/4407 (2.8)	117/4882 (2.4)
1	48/4407 (1.1)	41/4882 (0.8)
2	50/4407 (1.1)	58/4882 (1.2)
3	78/4407 (1.8)	95/4882 (1.9)
4-6 range (poor outcome to death)	4107/4407 (93.2)	4571/4882 (93.6)
4	46/4407 (1.0)	45/4882 (0.9)
5	27/4407 (0.6)	39/4882 (0.8)
6 (died)	4034/4407 (91.5)	4487/4882 (91.9)

	No. of Patients/Total No.a			Favors Favors	
	Tracheal Intubation	Supraglottic Airway Device	Adjusted Odds Ratio (95% CI)	Tracheal Supraglottic Intubation Airway Device	P Value
Primary analysis for modified Rankin Scale score ^b	300/4407	311/4882	0.92 (0.77-1.09)		.33
Subgroup analysis					
Utstein comparator ^c	154/697	177/764	1.04 (0.80-1.35)		.24 ^d
Utstein noncomparator ^c	130/3658	123/4067	0.84 (0.65-1.09)		.244
Out-of-hospital cardiac arrest witnessed by paramedice	87/556	76/607	0.78 (0.55-1.09)		.24 ^d
Out-of-hospital cardiac arrest not witnessed by paramedice	212/3848	235/4271	0.98 (0.80-1.20)	_	.24
Sensitivity analysis for primary outcome ^f	300/10741	311/11462	0.96 (0.81-1.14)		.63
				0.5 1.0 2. Odds Ratio (95% CI)	0

Preventing unrecognised oesophageal intubation: a consensus guideline from the Project for Universal Management of Airways and international airway societies

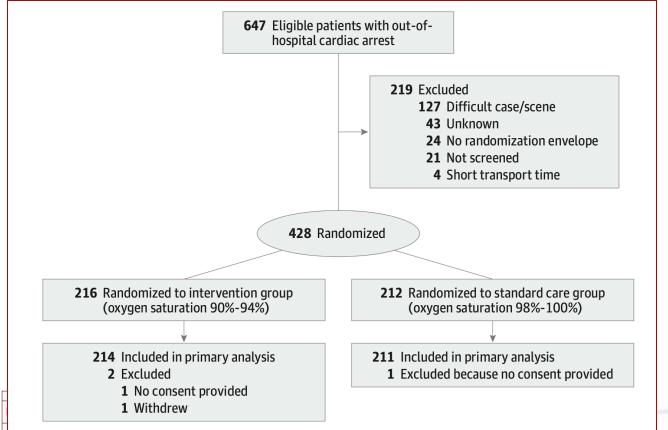
Chrimes N et al. Anaesthesia 2022

- While the CO2 level may be attenuated in a patient in cardiac arrest receiving chest compressions, a level below 1 kPa (7.5 mmHg) would generally reflect either an incorrectly placed tube or a very high likelihood of a poor outcome from resuscitation.
- In the presence of high-quality chest compressions, cardiac arrest cannot be assumed to be the cause of inability to satisfy the criteria for sustained exhaled carbon dioxide, and certainly does not explain a 'flat trace'. This should prompt exclusion of oesophageal intubation as its cause


Nolan JP, Sandroni C, Cariou A, Cronberg T, D'Arrigo S, Haywood K, Hoedemaekers A, Lilja G, Nikolaou N, Olasveengen TM, Robba C, Skrifvars MB, Swindell P, Soar J.

Intensive Care Med 2025 – Resuscitation 2025

Immediate post-resuscitation care

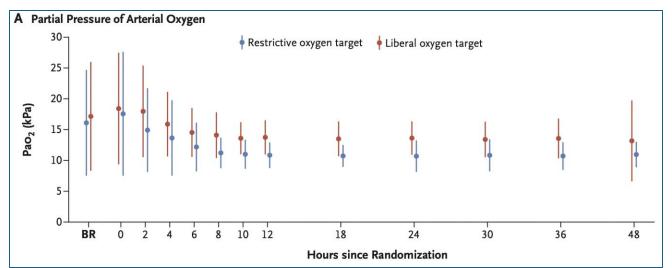

Airway management after ROSC

- Patients who remain comatose following ROSC, or who have another clinical indication for sedation and mechanical ventilation, should have their trachea intubated if this has not been done already during CPR.
- Tracheal intubation (with or without drugs) should be performed only by experienced operators who have a high success rate.
- Correct placement of the tracheal tube must be confirmed with waveform capnography.
- Post ROSC patients may require drug assisted tracheal intubation the same level of care should be provided as for any other critically ill patient with a physiologically or anatomically challenging airway in terms of skills of the provider, monitoring, and choice of drugs for induction, and maintenance of sedation

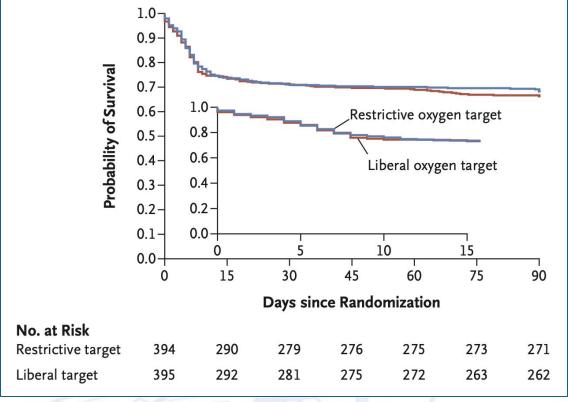
Effect of Lower vs Higher Oxygen Saturation Targets on Survival to Hospital Discharge Among Patients Resuscitated After Out-of-Hospital Cardiac Arrest The EXACT Randomized Clinical Trial

Stephen A. Bernard, MD; Janet E. Bray, PhD; Karen Smith, PhD; Michael Stephenson, BHlthSci; Judith Finn, PhD; Hugh Grantham, MBBS; Cindy Hein, PhD; Stacey Masters, PhD; Dion Stub, PhD; Gavin D. Perkins, MD; Natasha Dodge, MPH; Catherine Martin, PhD; Sarah Hopkins, MBBS; Peter Cameron, PhD; for the EXACT Investigators

			-		
	No. (%)				
Outcome	Target Spo ₂ 90%-94% (n = 214)	Target Spo ₂ 98%-100% (n = 211)	Difference (95% CI) ^a	Odds ratio (95% CI)	P value ^b
Primary					
Survival to hospital discharge	82 (38.3)	101 (47.9)	-9.6 (-18.9 to -0.2)	0.68 (0.46 to 1.00)	.05
Secondary					
Rearrest					
Pre-ICU ^c	27 (12.7) [n = 213]	21 (10.0) [n = 209]	2.6 (-3.4 to 8.7)	1.30 (0.71 to 2.38)	.40
Prehospital	7 (3.3)	3 (1.4)	1.8 (-1.0 to 4.7)		
ED	26 (12.2) [n = 213]	20 (9.5) [n = 210]	2.7 (-3.2 to 8.6)		
Hypoxia (any Spo ₂ <90%) prior to ICU	67 (31.3)	34 (16.1)	15.2 (7.2 to 23.1)	2.37 (1.49 to 3.79)	<.001
Peak troponin, median (IQR)	n = 193	n = 198			
Troponin T	581 (134 to 2363)	557 (179 to 2234)	24 (-405 to 453)		.91
Troponin I	1838 (316 to 8578)	1550 (270 to 6710)	288 (-756 to 1332)		.59
Survival to ICU discharge	96/192 (50.0)	106/197 (53.8)	-3.8 (-13.7 to 6.1)	0.86 (0.58 to 1.28)	.45
ICU length of stay, median (IQR), d					
Survivors	4.0 (2.0 to 6.0) [n = 96]	4.0 (2.0 to 6.0) [n = 105]	0.0 (-1.2 to 1.2)		>.99
Deaths	3.0 (1.0 to 5.5) [n = 96]	4.0 (1.0 to 7.0) [n = 91]	-1.0 (-2.8 to 0.8)		.27
Hospital length of stay, median (IQR), d					
Survivors	11.0 (7.0 to 17.0) [n = 82]	11.0 (7.0 to 16.0) [n = 101]	0.0 (-2.8 to 2.8)		>.99
Nonsurvivors	3.0 (1.0 to 6.0) [n = 132]	4.0 (1.0 to 7.0) [n = 109]	-1.0 (-2.4 to 0.4)		.16



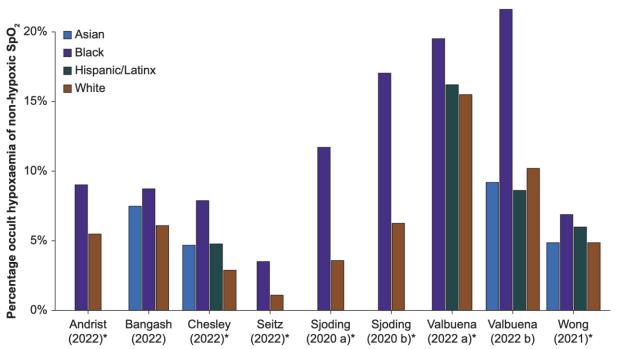
ORIGINAL ARTICLE


Schmidt et al. NEJM 2022

Oxygen Targets in Comatose Survivors of Cardiac Arrest

Oxygenation during the First 48 Hours

BOX Trial

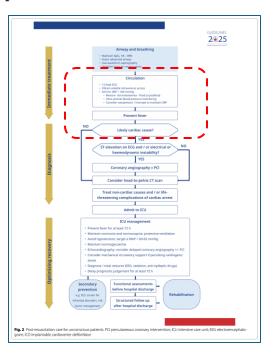


Effect of skin tone on the accuracy of the estimation of arterial oxygen saturation by pulse oximetry: a systematic review

Martin D et al. Br J Anaesthesia 2024

Frequency of occult hypoxaemia in paired SpO2-SaO2 measurements

- The majority of studies reported overestimation of SaO2 by pulse oximetry in participants with darker skin tones or from ethnicities assumed to have darker skin tones.
- Pulse oximetry can overestimate true SaO2 in people with darker skin tones.

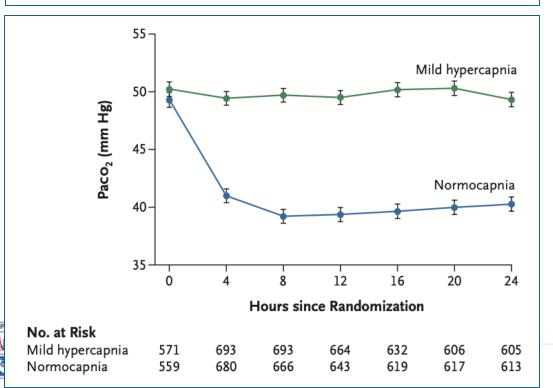


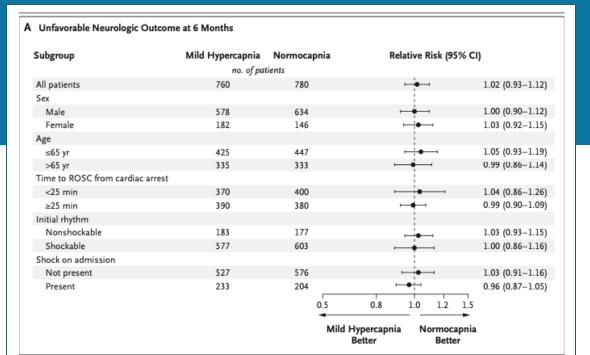
Nolan JP, Sandroni C, Cariou A, Cronberg T, D'Arrigo S, Haywood K, Hoedemaekers A, Lilja G, Nikolaou N, Olasveengen TM, Robba C, Skrifvars MB, Swindell P, Soar J. Intensive Care Med 2025 – Resuscitation 2025

Immediate post-resuscitation care

Control of oxygenation

- Immediately after ROSC, use 100% (or the maximum available) inspired oxygen until the arterial oxygen saturation (SpO2) can be measured and titrated reliably with pulse oximetry or the partial pressure of arterial oxygen (PaO2) can be measured.
- As soon as SpO2 can be measured reliably or arterial blood gas values are obtained, titrate the inspired oxygen to achieve an arterial oxygen saturation of 94-98% or arterial partial pressure of oxygen (PaO2) of 10–13 kPa (75–100 mmHg). Be aware that pulse oximetry can overestimate the true oxygen saturation in people with darker skin tones, and low-flow states will cause low signal quality.
- Avoid both hypoxaemia (PaO2<8 kPa or 60 mmHg) and hyperoxaemia following ROSC.

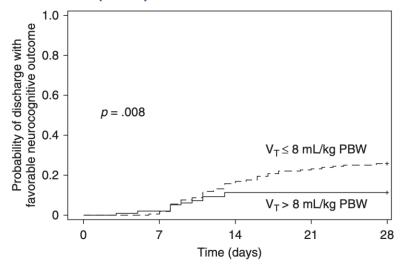



ORIGINAL ARTICLE

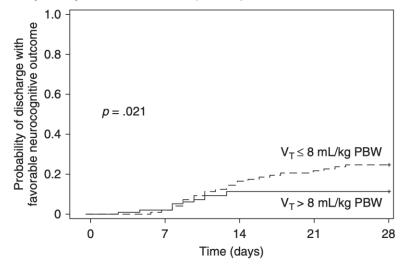
NEJM 2023

Mild Hypercapnia or Normocapnia after Out-of-Hospital Cardiac Arrest

G. Eastwood, A.D. Nichol, C. Hodgson, R.L. Parke, S. McGuinness, N. Nielsen, S. Bernard, M.B. Skrifvars, D. Stub, F.S. Taccone, J. Archer, D. Kutsogiannis, J. Dankiewicz, G. Lilja, T. Cronberg, H. Kirkegaard, G. Capellier, G. Landoni, J. Horn, T. Olasveengen, Y. Arabi, Y.W. Chia, A. Markota, M. Hænggi, M.P. Wise, A.M. Grejs, S. Christensen, H. Munk-Andersen, A. Granfeldt, G.Ø. Andersen, E. Qvigstad, A. Flaa, M. Thomas, K. Sweet, J. Bewley, M. Bäcklund, M. Tiainen, M. Iten, A. Levis, L. Peck, J. Walsham, A. Deane, A. Ghosh, F. Annoni, Y. Chen, D. Knight, E. Lesona, H. Tlayjeh, F. Svenšek, P.J. McGuigan, J. Cole, D. Pogson, M.P. Hilty, J.P. Düring, M.J. Bailey, E. Paul, B. Ady, K. Ainscough, A. Hunt, S. Monahan, T. Trapani, C. Fahey, and R. Bellomo, for the TAME Study Investigators*


Subgroup	Mild Hypercapnia	Normocapnia	Relative Risk (95%	CI)
	no. of pa	tients		
All patients	812	828	⊢ •	1.05 (0.95-1.16)
Sex				
Male	620	672	-	1.02 (0.91-1.14)
Female	192	156	⊢	1.07 (0.93-1.24)
Age				
≤65 yr	463	480	-	1.10 (0.95-1.27)
>65 yr	349	348	⊢	1.00 (0.90-1.11)
Time to ROSC from cardiac arrest				
<25 min	402	428	⊢	1.12 (0.91-1.39)
≥25 min	410	400		0.99 (0.89-1.11)
Initial rhythm				
Nonshockable	195	181	- 	1.03 (0.93-1.14)
Shockable	617	647	─	1.03 (0.87-1.22)
Shock on admission				
Not present	570	617	-	1.09 (0.96-1.23)
Present	242	0.5	0.8 1.0 1.2 1	0.93 (0.84–1.03)
		Mild Hy	percapnia Normocapni	a

Favorable Neurocognitive Outcome with Low Tidal Volume Ventilation after Cardiac Arrest


Beitler JR et al. AJRCCM 2017

Probability of discharge with favorable neurocognitive outcome through Day 28

Entire cohort (n=256)

Propensity matched cohort (n=194)

Prof Alain Cariou MODICANE Santé Université Paris Cité Poris Cité

At a Glance Commentary

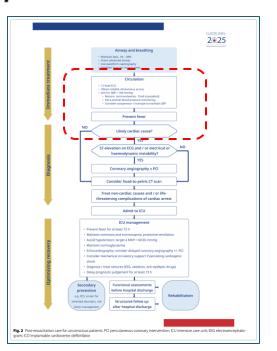
Scientific Knowledge on the Subject: Patients suffering cardiac arrest have several risk factors for lung injury and often experience poor neurocognitive outcome. Low tidal volumes (VTs) attenuate pulmonary and extrapulmonary organ injury in patients at risk of ventilation-induced lung injury. Experimental data suggest low VT also may be neuroprotective. It is unknown whether

What This Study Adds to the

outcome postarrest.

low V_T improves neurocognitive

Field: In patients suffering nontraumatic out-of-hospital cardiac arrest, lower V_T during the first 48 hours of intensive care unit admission was associated with improved neurocognitive outcome at hospital discharge, more ventilator-free days, and more shock-free days. In context with current understanding of lung–brain crosstalk, these findings suggest low-V_T ventilation may improve neurocognitive outcome after cardiac arrest.

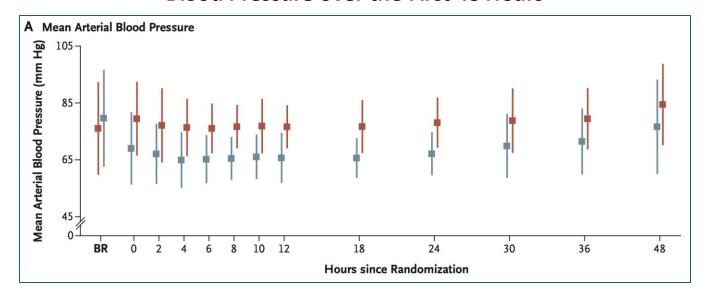


Nolan JP, Sandroni C, Cariou A, Cronberg T, D'Arrigo S, Haywood K, Hoedemaekers A, Lilja G, Nikolaou N, Olasveengen TM, Robba C, Skrifvars MB, Swindell P, Soar J. Intensive Care Med 2025 – Resuscitation 2025

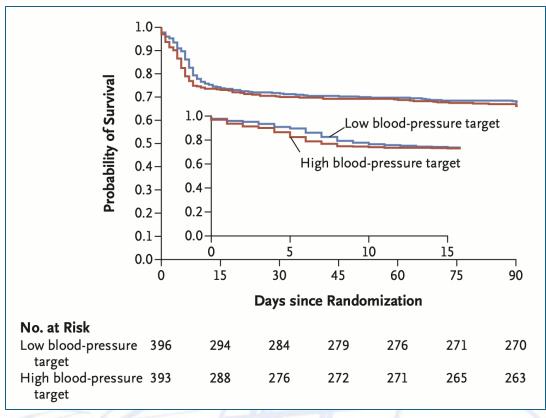
Immediate post-resuscitation care

Control of ventilation

- Obtain arterial blood gases and monitor end tidal CO2 in mechanically ventilated patients.
- Target normocapnia a partial pressure of carbon dioxide of 4.7–6.0 kPa (or approximately 35-45 mmHg) in adults with ROSC after cardiac arrest.
- In patients with accidental hypothermia or treated with hypothermia monitor PaCO2 frequently as hypocapnia may occur.
- In hypothermic patients use consistently either temperature or nontemperature corrected blood gas values.
- Use a lung protective ventilation strategy aiming for a tidal volume of 6–
 8 mL/kg ideal body weight.



ORIGINAL ARTICLE


Kjaergaard et al. NEJM 2022

Blood-Pressure Targets in Comatose Survivors of Cardiac Arrest

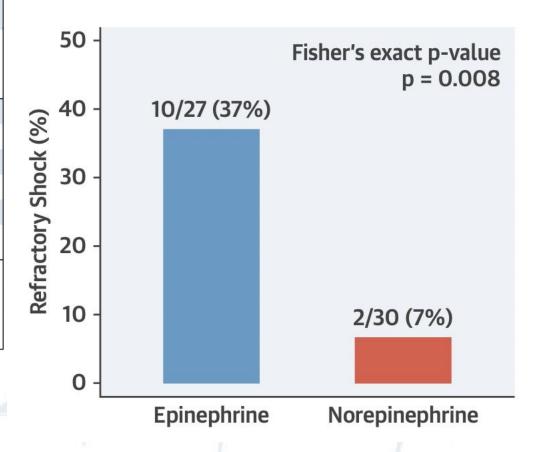
Blood Pressure over the First 48 Hours

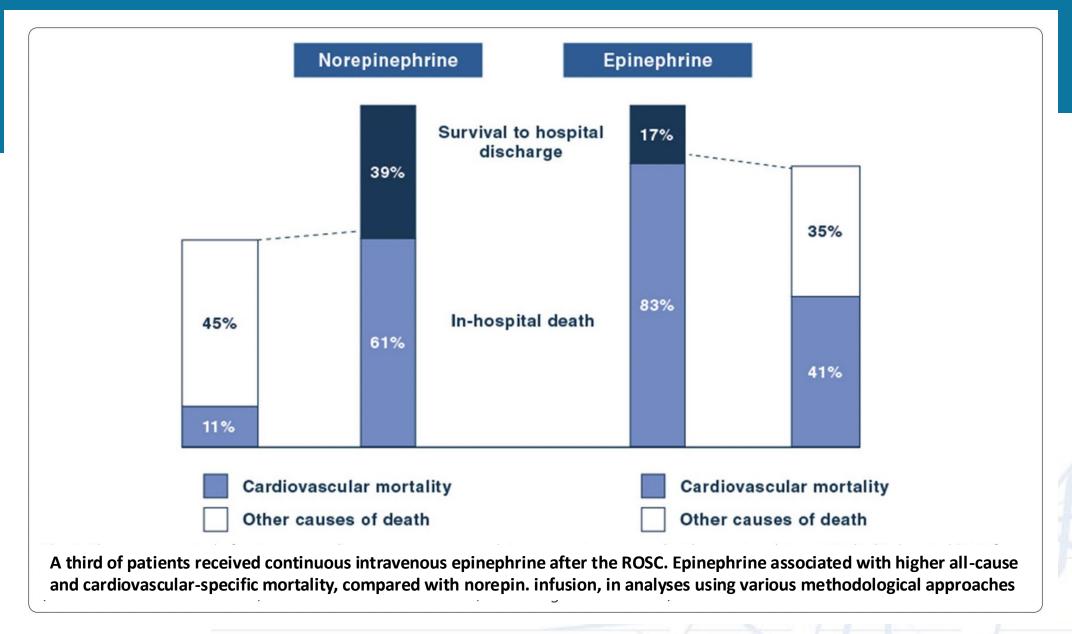
Epinephrine Versus Norepinephrine for Cardiogenic Shock After Acute Myocardial Infarction

CC VOL. 72, NO. 2, 2018 JULY 10, 2018:173-82

Bruno Levy, MD, PhD,^a Raphael Clere-Jehl, MD,^b Annick Legras, MD,^c Tristan Morichau-Beauchant, MD,^d Marc Leone, MD, PhD,^e Ganster Frederique, MD,^f Jean-Pierre Quenot, MD, PhD,^g Antoine Kimmoun, MD, PhD,^a Alain Cariou, MD, PhD,^d Johan Lassus, MD, PhD,^h Veli-Pekka Harjola, MD, PhD,^h Ferhat Meziani, MD, PhD,^b Guillaume Louis, MD,ⁱ Patrick Rossignol, MD, PhD,^j Kevin Duarte, PhD,^j Nicolas Girerd, MD, PhD,^j Alexandre Mebazaa, MD, PhD,^k Philippe Vignon, MD, PhD^l

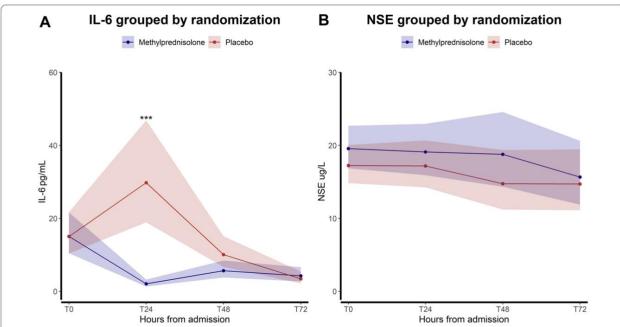
TABLE 2 Serious Adverse Events and Outcomes


	Epinephrine (n = 27)	Norepinephrine $(n=30)$	p Value*	Odds Ratio (95% Confidence Interval)	p Value†
Refractory shock	10 (37)	2 (7)	0.008	8.24 (1.61-42.18)	0.011
Arrhythmia	11 (41)	10 (33)	0.59	1.37 (0.47-4.05)	0.56
ECLS	3 (11)	1 (3)	0.34	3.62 (0.35-37.14)	0.28
Death	14 (52)	11 (37)	0.29	1.86 (0.65-5.36)	0.25
Death within 7 days	8 (30)	3 (10)	0.093	3.79 (0.89-16.17)	0.072
Death within 28 days	13 (48)	8 (27)	0.11	2.55 (0.84-7.72)	0.097

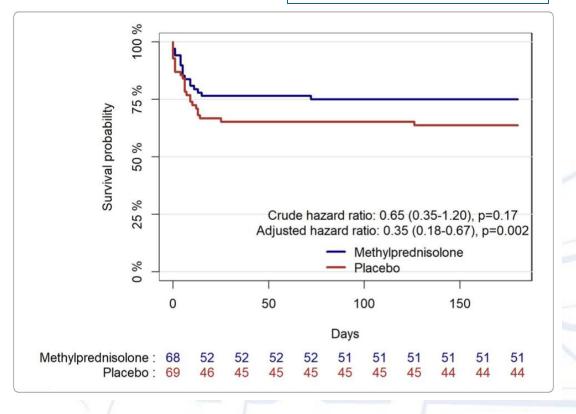

Values are n (%) unless otherwise indicated. Odds ratios were expressed by using the norepinephrine group as reference. *p value from the Fisher exact test. †p value from the Wald test.

 ${\sf ECLS} = {\sf extracorporeal} \ {\sf life} \ {\sf support}.$

EpinephrineNorepinephrine



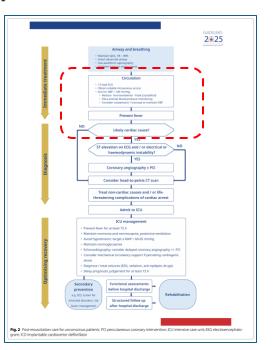
Prehospital high-dose methylprednisolone in resuscitated out-of-hospital cardiac arrest patients (STEROHCA): a randomized clinical trial


Laust E. R. Obling^{1*}, Rasmus P. Beske¹, Martin A. S. Meyer¹, Johannes Grand¹, Sebastian Wiberg^{1,2}, Benjamin Nyholm¹, Jakob Josiassen¹, Frederik T. Søndergaard¹, Thomas Mohr³, Anders Damm-Hejmdal⁴, Mette Bjerre⁵, Ruth Frikke-Schmidt^{6,7}, Fredrik Folke^{4,7,8}, Jacob E. Møller^{1,7,9}, Jesper Kjaergaard^{1,7} and Christian Hassager^{1,7}

Study intervention

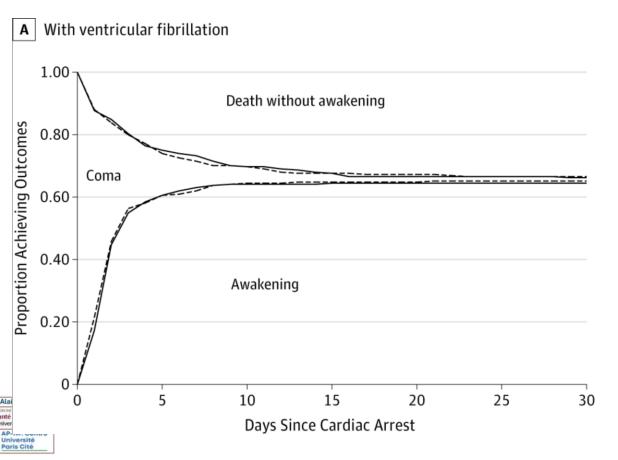
If eligible for inclusion, patients were randomized to receive a bolus injection of methylprednisolone 250 mg intravenously ($2 \times 125 \text{ mg/2 mL}$) or placebo (4 mL isotonic NaCl), both administered over 5 min. The dosage was the maximum allowed for methylprednisolone bolus injection in Denmark. The intervention was performed as soon as possible following resuscitation and a minimum of 5 min from ROSC in the prehospital setting. Injection of allocated medicine was completed before hospital arrival, and only allocation number was available at admission.

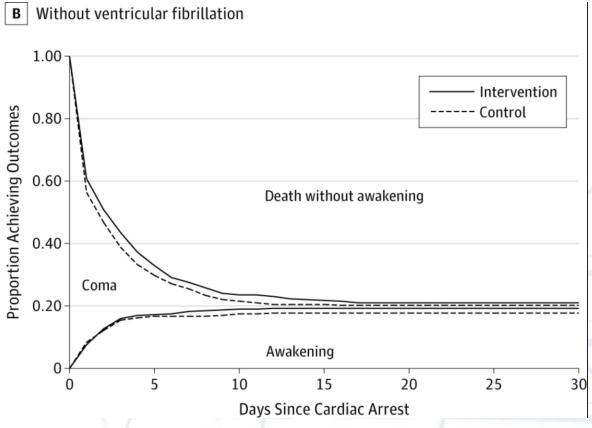
Fig. 2 Primary efficacy analyses: **A** Treatment-by-time interaction for IL-6 (pg/mL) depicting geometric means and 95% confidence intervals after antilog to each time point according to randomization; **B** Treatment-by-time interaction for NSE (ug/L) depicting geometric means and 95% confidence intervals after antilog to each time point according to randomization. The figure includes the measurements for the modified intention-to-treat population (n = 137)



Nolan JP, Sandroni C, Cariou A, Cronberg T, D'Arrigo S, Haywood K, Hoedemaekers A, Lilja G, Nikolaou N, Olasveengen TM, Robba C, Skrifvars MB, Swindell P, Soar J. Intensive Care Med 2025 – Resuscitation 2025

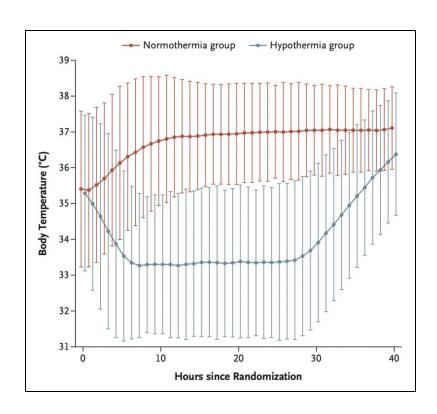
Immediate post-resuscitation care

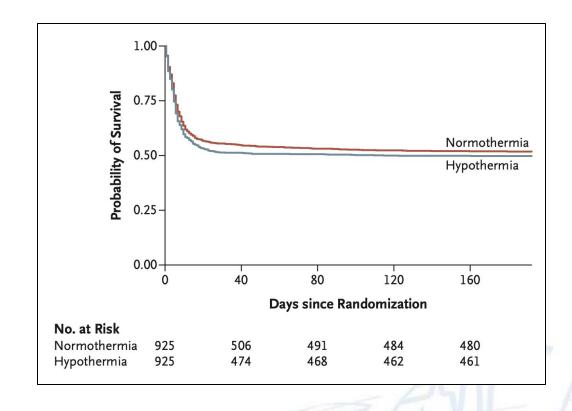

Haemodynamic monitoring and management


- Avoid hypotension and target a SBP >100 mmHg (or a MAP>60–65 mmHg) after cardiac arrest.
- Maintain perfusion with fluids, noradrenaline and/or dobutamine, depending on individual patient need for intra-vascular volume, vasoconstriction or inotropy.
- Do not give steroids routinely after cardiac arrest.
- Perform **echocardiograpy** as soon as possible in all patients to detect any underlying cardiac pathology and quantify the degree of myocardial dysfunction.
- All patients should be monitored with an arterial line for continuous blood pressure measurements, and it is reasonable to monitor cardiac output in haemodynamically unstable patients.

Effect of Prehospital Induction of Mild Hypothermia on Survival and Neurological Status Among Adults With Cardiac Arrest Kim F et al. JAMA 2014

Proportion of comatose patients achieving either death without awakening or awakening as a function of days after cardiac arrest

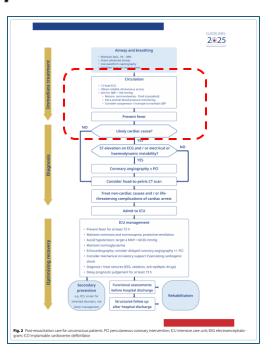




ORIGINAL ARTICLE

Hypothermia versus Normothermia after Out-of-Hospital Cardiac Arrest

N ENGL J MED 384;24 NEJM.ORG JUNE 17, 2021



Nolan JP, Sandroni C, Cariou A, Cronberg T, D'Arrigo S, Haywood K, Hoedemaekers A, Lilja G, Nikolaou N, Olasveengen TM, Robba C, Skrifvars MB, Swindell P, Soar J. Intensive Care Med 2025 – Resuscitation 2025

Immediate post-resuscitation care

Temperature control

- Actively prevent fever by targeting a temperature ≤ 37.5 °C for patients who remain comatose after ROSC from cardiac arrest.
- Comatose patients with mild hypothermia (32–36 °C) after ROSC should not be actively warmed to achieve normothermia.
- We recommend against the routine use of prehospital cooling with rapid infusion of large volumes of cold intravenous fluid immediately after ROSC.

Early coronary angiogram after cardiac arrest in non-STEMI patients

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Coronary Angiography after Cardiac Arrest without ST-Segment Elevation

J.S. Lemkes, G.N. Janssens, N.W. van der Hoeven, L.S.D. Jewbali, E.A. Dubois, M. Meuwissen, T.A. Rijpstra, H.A. Bosker, M.J. Blans, G.B. Bleeker, R. Baak, G.J. Vlachojannis, B.J.W. Eikemans, P. van der Harst, I.C.C. van der Horst, M. Voskuil, J.J. van der Heijden, A. Beishuizen, M. Stoel, C. Camaro, H. van der Hoeven, J.P. Henriques, A.P.J. Vlaar, M.A. Vink, B. van den Bogaard, T.A.C.M. Heestermans, W. de Ruijter, T.S.R. Delnoij, H.J.G.M. Crijns, G.A.J. Jessurun, P.V. Oemrawsingh, M.T.M. Gosselink, K. Plomp, M. Magro, P.W.G. Elbers, P.M. van de Ven, H.M. Oudemans-van Straaten, and N. van Royen

COACT

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Angiography after Out-of-Hospital Cardiac Arrest without ST-Segment Elevation

S. Desch, A. Freund, I. Akin, M. Behnes, M.R. Preusch, T.A. Zelniker, C. Skurk, U. Landmesser, T. Graf, I. Eitel, G. Fuernau, H. Haake, P. Nordbeck, F. Hammer, S.B. Felix, C. Hassager, T. Engstrøm, S. Fichtlscherer, J. Ledwoch, K. Lenk, M. Joner, S. Steiner, C. Liebetrau, I. Voigt, U. Zeymer, M. Brand, R. Schmitz, J. Horstkotte, C. Jacobshagen, J. Pöss, M. Abdel-Wahab, P. Lurz, A. Jobs, S. de Waha-Thiele, D. Olbrich, F. Sandig, I.R. König, S. Brett, M. Vens, K. Klinge, and H. Thiele, for the TOMAHAWK Investigators*

JAMA Cardiology | Original Investigation

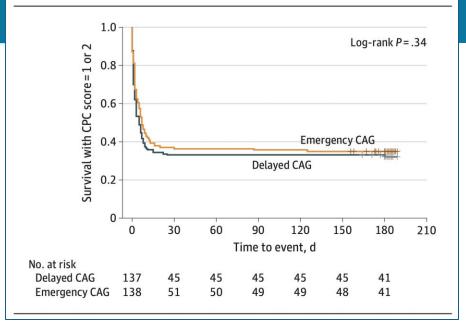
Emergency vs Delayed Coronary Angiogram in Survivors of Out-of-Hospital Cardiac Arrest Results of the Randomized, Multicentric EMERGE Trial

Caroline Hauw-Berlemont, MD, MS; Lionel Lamhaut, MD, PhD; Jean-Luc Diehl, MD; Christophe Andreotti, MD; Olivier Varenne, MD, PhD; Pierre Leroux, MD; Jean-Baptiste Lascarrou, MD; Patrice Guerin, MD, PhD; Thomas Loeb, MD; Eric Rouple, MD, PhD; Cédric Daubin, MD; Farzin Beygui, MD, PhD; Florence Boissier, MD, PhD; Nicolas Marjanovic, MD, PhD; Luc Christiaens, MD, PhD; Aurélie Vilfaillot, MS; Sophie Glippa, MS; Juliette Djadi Prat, MD, PhD; Gilles Chatellier, PM, PhD; Alain Cariou, MD, PhD; Christian Spaulding, MD, PhD; for the EMERGE Investigators

TOMAHAWK

EMERGE

JAMA Cardiology | Original Investigation

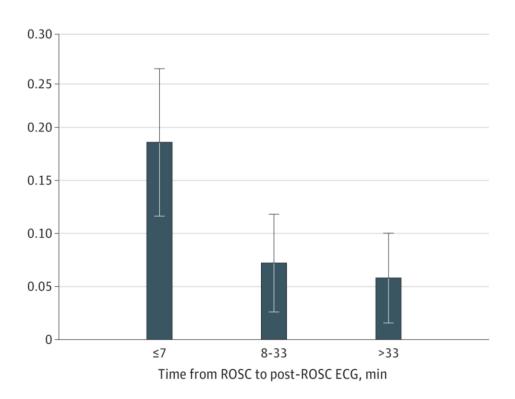

JAMA Cardiology Published online June 8, 2022

Emergency vs Delayed Coronary Angiogram in Survivors of Out-of-Hospital Cardiac Arrest Results of the Randomized, Multicentric EMERGE Trial

Caroline Hauw-Berlemont, MD, MS; Lionel Lamhaut, MD, PhD; Jean-Luc Diehl, MD; Christophe Andreotti, MD; Olivier Varenne, MD, PhD; Pierre Leroux, MD; Jean-Baptiste Lascarrou, MD; Patrice Guerin, MD, PhD; Thomas Loeb, MD; Eric Roupie, MD, PhD; Cédric Daubin, MD; Farzin Beygui, MD, PhD; Florence Boissier, MD, PhD; Nicolas Marjanovic, MD, PhD; Luc Christiaens, MD, PhD; Aurélie Vilfaillot, MS; Sophie Glippa, MS; Juliette Djadi Prat, MD, PhD; Gilles Chatellier, PM, PhD; Alain Cariou, MD, PhD; Christian Spaulding, MD, PhD; for the EMERGE Investigators

Outcome	Emergency CAG (n = 141)	Delayed CAG (n = 138)	Hazard ratio ^{a,b} (95% CI)	P value
Primary outcome at 180 d, ^{a,c} No./total No. (%)				
CPC = 1 or 2	47/141 (34.1)	42/138 (30.7)		
CPC = 3, 4, or 5	91/141 (65.9)	95/138 (69.3)	0.87 (0.65-1.15)	.32
Unknown CPC status	3/141 (2.1)	1/138 (0.7)		
Secondary outcomes				
Overall survival rate at 180 da	51/141(36.2)	46/138 (33.3)	0.86 (0.64-1.15)	.31

Figure 2. Patient Survival With a Cerebral Performance Category (CPC) Score of 1 or 2


	Emerger	Emergency CAG		CAG	Risk ratio		Emergei	ncy Del	ayed
Studies and year	Events	No event	Events	No event	(95% CI)		Č	AG CAC	3
COACT, ¹⁰ 2019	97	176	87	178	1.08 (0.86-1.37)			-	
PEARL, ¹¹ 2020	22	27	27	23	0.83 (0.99-1.39)			-	
TOMAHAWK, 12 2021	143	122	122	143	1.17 (0.99-1.39)				
EMERGE, ¹³ 2020	90	51	92	46	0.96 (0.81-1.14)				
Random-effects model	: Q=4.05; d	df=3; P=.26;	$I^2 = 27.2\%;$	$\tau^2 = 0$	1.04 (0.92-1.18)			\lambda	
						0.05	0.25	1	4
							Risk ratio ((95% CI)	

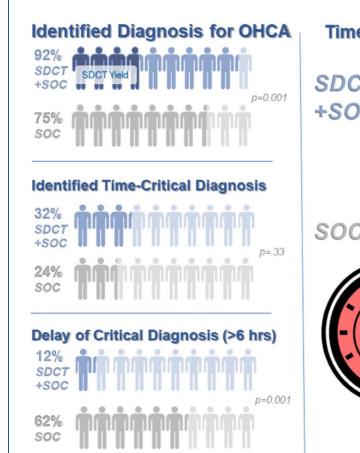
Association of Timing of Electrocardiogram Acquisition After Return of Spontaneous Circulation With Coronary Angiography Findings in Patients With Out-of-Hospital Cardiac Arrest

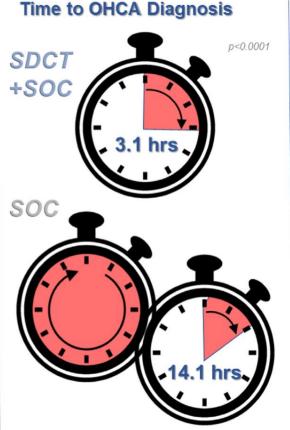
Baldi Eet al. JAMA Network Open 2021

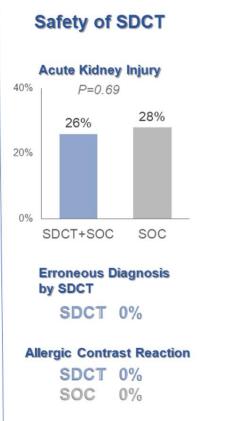
Proportion of false-positive ECG findings over time

Key Points

- Question: Is the time from the ROSC to ECG acquisition associated with the percentage of false-positive ECG findings for STEMI in patients who experience out-of-hospital cardiac arrest?
- Findings: In this cohort study of 370 patients who were resuscitated from out-of-hospital cardiac arrest, the percentage of false-positive ECG findings among those performed 7 minutes or less after ROSC (18.5%) was significantly higher than those performed between 8 and 33 minutes (7.2%) and over 33 minutes (5.8%) after ROSC.
- Meaning: Results of this study suggest that early ECG acquisition after ROSC is associated with a higher percentage of false-positive ECG findings for STEMI after out-of-hospital cardiac arrest.




Clinical paper


Diagnostic yield, safety, and outcomes of Head-to-pelvis sudden death CT imaging in post arrest care: The CT FIRST cohort study

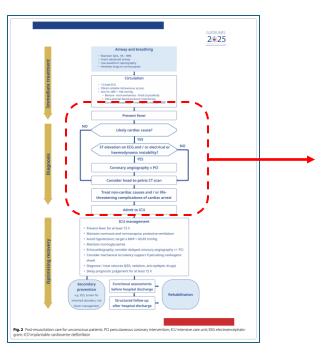
Kelley R.H. Branch ^{a,*}, Medley O. Gatewood ^b, Peter J. Kudenchuk ^a, Charles Maynard ^c, Michael R. Sayre ^b, David J. Carlbom ^d, Rachel M. Edwards ^e, Catherine R. Counts ^b, Jeffrey L. Probstfield ^a, Robin Brusen ^f, Nicholas Johnson ^b, Martin L. Gunn ^{e,g}

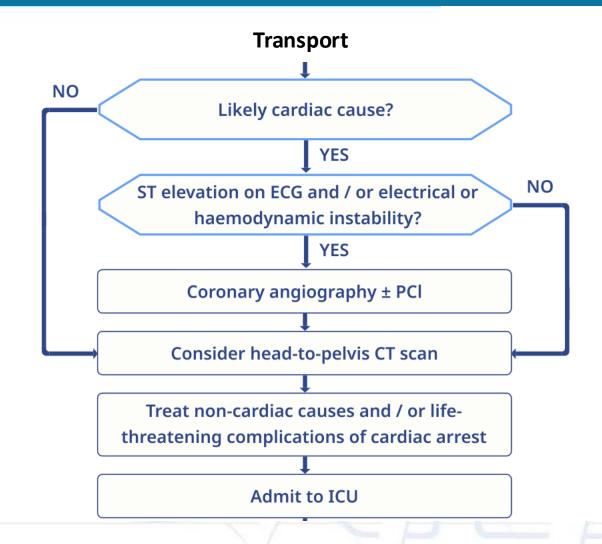
RESUSCITATION 188 (2023) 109785

Studies assessing CT-scan performance for identification of causes or complications of OHCA. Benghanem & Cariou, Resuscitation 2023

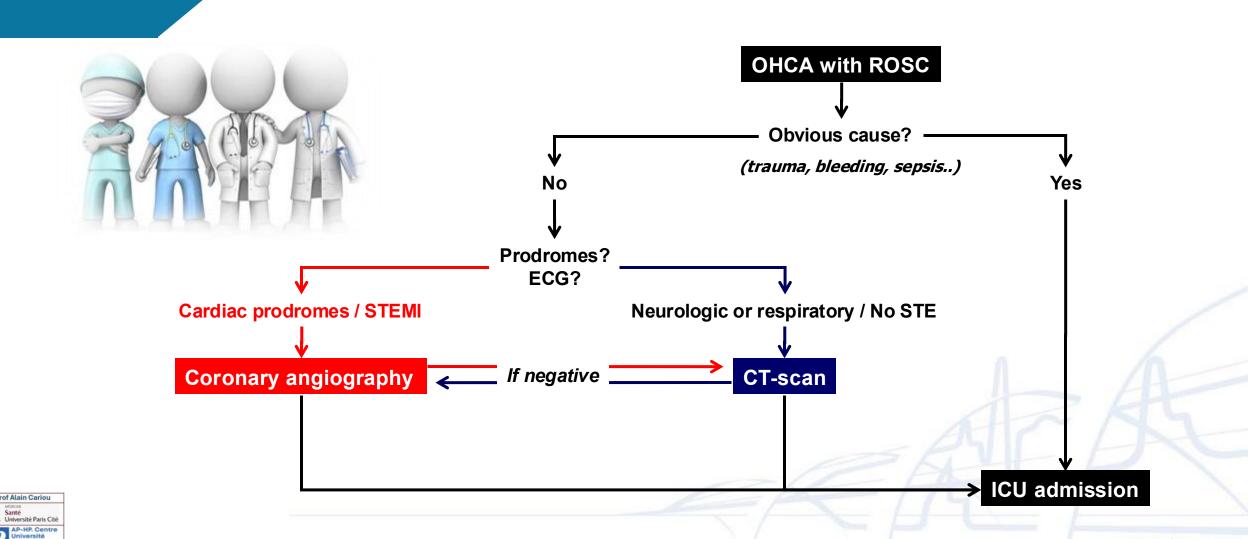
Studies	Design	Population	CT scan types	CT scan performance
Branch et	Prospective	N= 247 idiopathic OHCA	CT head-to-pelvis, including	38% of potentials causes (myocardial infarction, pneumonia, heart
al, 2023		N=104 in the systematic strategy	coronary CT angiographic data, within 6 hours after hospital arrival	failure, pulmonary embolism, abdominal catastrophe, haemorrhagic cerebral vascular accident
		Vs	Vs	
		N=143 in the standard of care strategy	CT head, thoracic, and/or abdominopelvic	
Chelly et al, 2012	Retrospective	N= 355 OHCA without obvious causes of CA at admission	CT head and pulmonary angiogram	20% of potentials causes: stroke, pulmonary embolism, acute pulmonary edema, traumatic brain injury, pleural effusion, pneumothorax, pneumonia
Adel et al, 2022	Prospective	N= 225 OHCA	CT head and pulmonary angiogram	15% of potentials causes: pulmonary embolism, tension pneumothorax, intra cranial bleeding, aortic dissection, pericardial tamponade
				70% of CPR complications: rib or sternal fractures, aspiration, hepatic bleeding, intra-abdominal air
Hwang et al, 2021	Retrospective	N=452 OHCA including:	CT head, chest and abdomen	7% of potentials causes: chest: 12.5%, abdominal: 5.3%, head: 4.4%
Moriwaki et al, 2013	Retrospective	N=1153 idiopathic sudden death survivors	Peri-mortem non-contrast head and/or thorax CT scans	22% of potentials causes of death: aortic dissection, airway obstruction or submersion, hypoxia due to pneumonia, cerebro-vascular disorder, asthma and acute worsening of chronic obstructive pulmonary disease, pulmonary embolism
Yang et al, 2020	Retrospective	N=93 OHCA with ECPR	CT chest and pelvis	77% of potentials causes of CA or complications of CPR: myocardial infarction, hypoxic brain injury, sternal/rib fractures, aortic dissection, pulmonary embolism, cardiac tamponade

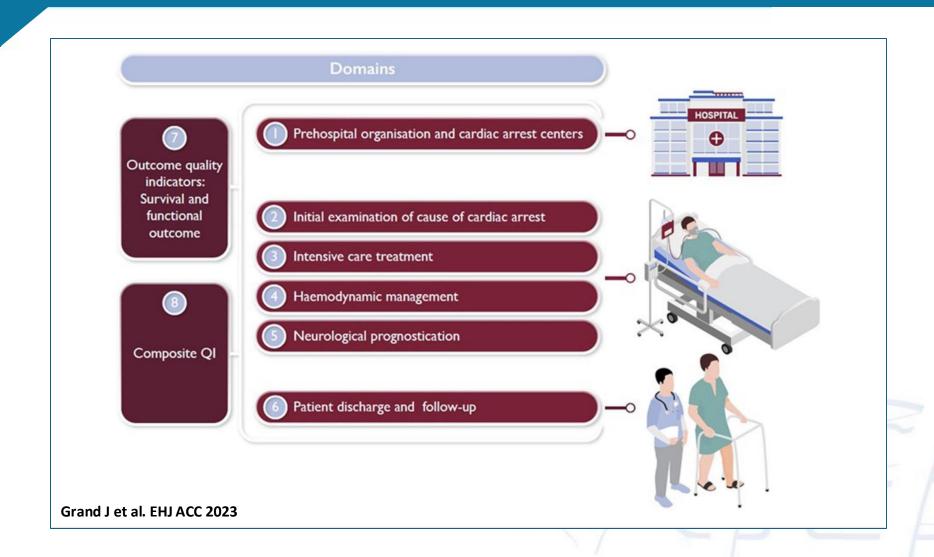
GUIDELINES


2025

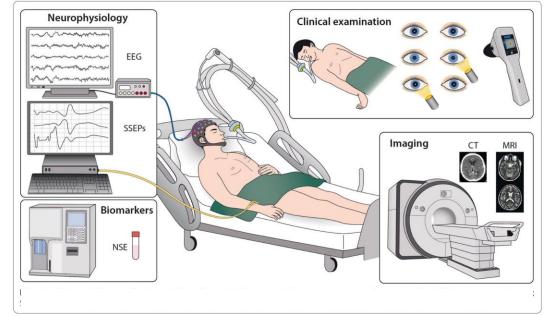

EUROPEAN RESUSCITATION COUNCIL®

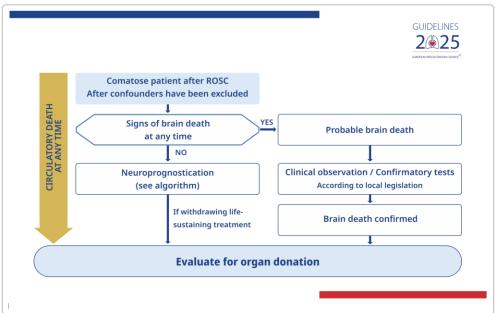
Nolan JP, Sandroni C, Cariou A, Cronberg T, D'Arrigo S, Haywood K, Hoedemaekers A, Lilja G, Nikolaou N, Olasveengen TM, Robba C, Skrifvars MB, Swindell P, Soar J. Intensive Care Med 2025 – Resuscitation 2025




Et à Cochin, vous faites quoi ?

Post-resuscitation care: 8 domains of care where quality should be assessed




Nolan JP, Sandroni C, Cariou A, Cronberg T, D'Arrigo S, Haywood K, Hoedemaekers A, Lilja G, Nikolaou N, Olasveengen TM, Robba C, Skrifvars MB, Swindell P, Soar J. Intensive Care Med 2025 – Resuscitation 2025

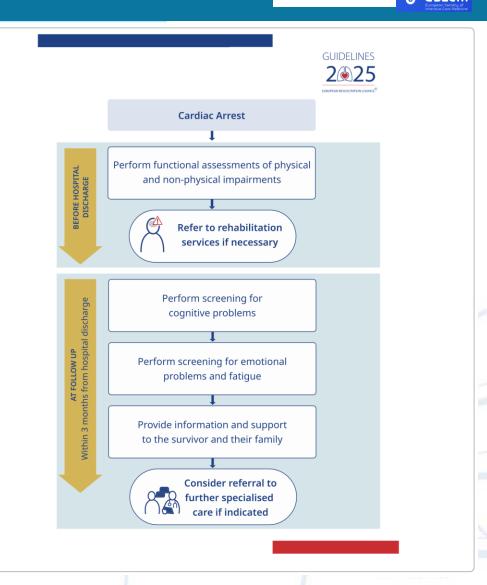
Prediction of poor and good outcome

Organ donation if brain death or poor neurological outcome

GUIDELINES

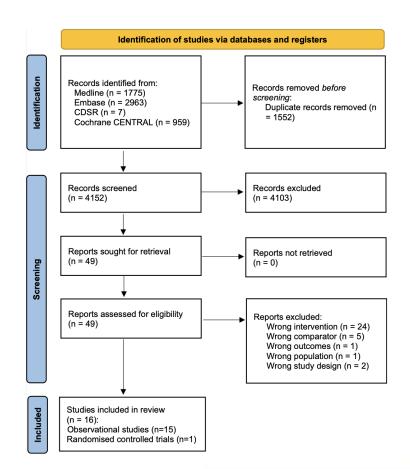
2025

EUROPEAN RESUSCITATION COUNCIL®


Nolan JP, Sandroni C, Cariou A, Cronberg T, D'Arrigo S, Haywood K, Hoedemaekers A, Lilja G, Nikolaou N, Olasveengen TM, Robba C, Skrifvars MB, Swindell P, Soar J. Intensive Care Med 2025 – Resuscitation 2025

Rehabilitation and follow-up after cardiac arrest

- Implement early mobilisation, delirium management and ICU diaries during hospitalisation
- Provide information for patients and co-survivors
- Perform functional assessments of physical and non-physical impairments before discharge to identify rehabilitation needs and refer to early rehabilitation if indicated.
- Provide cardiac rehabilitation as indicated by the cause of the cardiac arrest.
- Organise a follow-up of cardiac arrest survivors within three months after hospital discharge; screening for cognitive, physical, emotional problems, fatigue, and impact on life roles.
- Invite co-survivors to the follow-up; ask about emotional problems and impact on life roles.
- Undertake specialist referral and further rehabilitation as indicated.

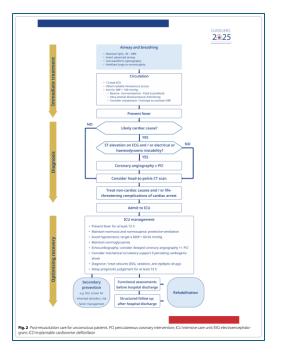


Cardiac arrest centres for patients with non-traumatic cardiac arrest: a systematic review

Boulton AJ, et al. Resuscitation 2024

Survival to hospital discharge

		CAC		non-CAC					
Study	Analysis	Events	Total	Events	Total				
Chien 2020 (27)									
Non-shockable	Adj	Not reported	533	Not reported	523				
Shockable	Adj	Not reported	2045	Not reported	2055	-			
Chocron 2017 (28)	Adj	66	244	69	244	-			
Cournoyer 2018 (29)	Adj	479	2383	282	2541				
Jung 2022 (30)	Adj	3120	23292	5345	72639		=		
Kim 2019 (31)	Adj	455	4036	196	5876				
Kragholm 2017 (32)	Adj	455	1359	22	148				
McKenzie 2018 (34)	Adj	227	404	47	105	-			
Soholm 2015 (36)	Unadj	264	586	117	492				
Spaite 2014 (37)	Adj	250	1734	39	440				
Stub 2011 (38)	Adj	611	1816	235	890	_	-		
Sunde 2007 (39)	Unadj	34	61	18	58				
Tagami 2012 (40)	Unadj	30	712	18	770				
Yeh 2021 (41)	Adj	248	1222	39	366				
				Fa	0.50 vours non-0	1.0 CAC	Favours CAC	5.00	10.00


"This review supports a weak recommendation that adults with OHCA are cared for at CACs based on very low certainty of evidence"

Nolan JP, Sandroni C, Cariou A, Cronberg T, D'Arrigo S, Haywood K, Hoedemaekers A, Lilja G, Nikolaou N, Olasveengen TM, Robba C, Skrifvars MB, Swindell P, Soar J. Intensive Care Med 2025 – Resuscitation 2025

Cardiac arrest centres

- Adult patients with non-traumatic OHCA should be considered for transport to a cardiac arrest centre for post-resuscitation care, whenever possible, according to local protocols.
- Health care networks should establish local protocols to develop and maintain a cardiac arrest network.

CAC (Cardiac Arrest Centre)

Emergency department for assessment of patient without STEMI criteria for non-cardiac causes

Coronary angiography 24/7

ICU with the option of TTM

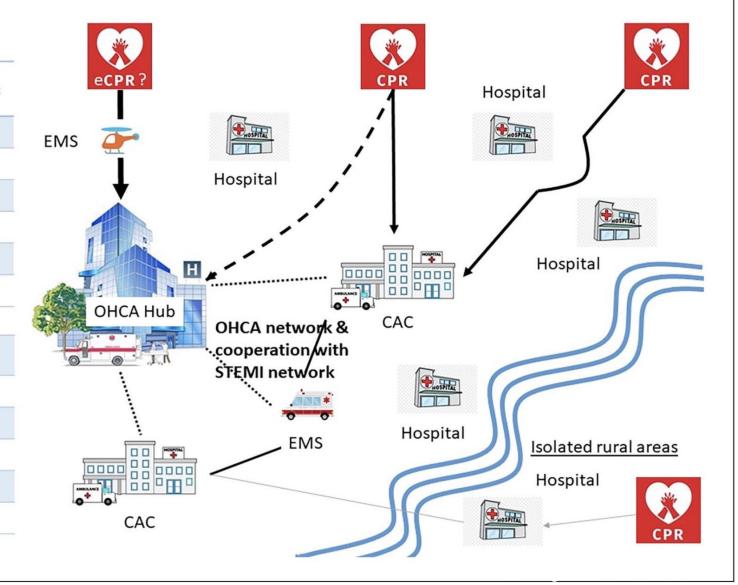
Imaging facilities (TTE, TEE, CT and MRI)

Rehabilitation service

Education and teaching

Data acquisition and quality control

OHCA hub hospital


All features of the CAC AND

Mechanical assist device program - eCPR

Arrhythmia management with EPS

Device management

Research facilities and fund raising

Post-resuscitation care: key messages

POST RESUSCITATION CAREKEY MESSAGES

After ROSC use ABCDE approach

- Insert an advanced airway (tracheal intubation when skills available)
- As soon as SpO₂ can be measured reliably or arterial blood gas values are obtained, titrate the inspired oxygen to achieve an arterial oxygen saturation of 94-98%, and ventilate lungs to achieve normocapnia

POST RESUSCITATION

CARE

 Aim for a systolic blood pressure > 100 mmHg or a mean arterial pressure > 60-65 mmHg

Prioritise immediate coronary angiography for patients with clear ST-elevation on the ECG or other high suspicion of coronary occlusion (e.g. haemodynamic and/or electrical instability)

Use a multimodal strategy including clinical examination, electrophysiology, biomarkers, and imaging to predict good or poor neurological outcome

Actively prevent fever by targeting a temperature ≤ 37.5 °C for patients who remain comatose after ROSC from cardiac arrest

